① 債券的基點價格值如何計算
初始價格-應計收益率每增加1個基點後的價=基點價格值
② 什麼是債券的久期,修正久期和基點價值
1、債券久期是指由於決定債券價格利率風險大小的因素主要包括償還期和息票利率,因此需要找到某種簡單的方法,准確直觀地反映出債券價格的利率風險程度。
2、修正久期是對於給定的到期收益率的微小變動,債券價格的相對變動與其麥考利久期的比例。這種比例關系是一種近似的比例關系,以債券的到期收益率很小為前提。是在考慮了收益率的基礎上對麥考利久期進行的修正,是債券價格對於利率變動靈敏性的更加精確的度量。
3、基點價格值是指到期收益率變化一個基點,也就是0.01個百分點時,債券價格的變動值。基點價格值是價格變化的絕對值,價格變化的相對值稱作價格變動百分比,它是價格變化的絕對值相對於初始價格的百分比,用式子表示就是:價格變動百分比=基點價格值/初始價格。
應答時間:2020-12-09,最新業務變化請以平安銀行官網公布為准。
[平安銀行我知道]想要知道更多?快來看「平安銀行我知道」吧~
https://b.pingan.com.cn/paim/iknow/index.html
③ 有效久期跟基點價值什麼關系
基點價值=債券(組合)價值*有效久期*0.01%
註:久期本身就是利率或債券到期收益率單位變動時對於債券價格變化多少個百分點的近似值,而對於收益率或利率來說,一個基點就相當於0.01%
④ 基點價格值的介紹
基點價格值是指到期收益率變化一個基點,也就是0.01個百分點時,債券價格的變動值。基點價格值是價格變化的絕對值,價格變化的相對值稱作價格變動百分比,它是價格變化的絕對值相對於初始價格的百分比,用式子表示就是:價格變動百分比=基點價格值/初始價格。
⑤ 題目中已知每種債券的市場價值和久期,如何求債券組合的基點價值
先計算組合的久期:600/1000*1+200/1000*2+200/1000*4=1.8
基點價值=1.8*1000/10000*10000=1800元
(單位是萬元 所以除以10000後再乘以10000)
⑥ 什麼是企業債券基點
基點,是英文BasePoint的直譯,也稱為BP。基點是利率報價的單位,一個基點(1BP)是指萬分之一。一般在描述固定收益證券的利差時使用,表示兩種固定收益證券品種收益率的絕對差額。
企業債券發行的主體可以是股份公司。 但也可以是非股份公司的企業發行債券,所以,也可以是有限責任公司,約定在一定期限內還本付息的債券,企業債券 和企業發行的債券合在一起。企業債券的發行主體是股份公司,我國一部分發債的企業不是股份公司企業債券通常又稱為公司債券、滬證券交易所關於上市企業債券的規定。申請上市的企業債券必須符合規定條件。
企業債券是企業依照法定程序發行,一般把這類債券叫企業債,一般歸類時。通常泛指企業發行的債券、約定在一定期限還本付息的有價證券。
企業債券是公司依照法定程序發行,可直接成為企業債券,約定在一定期限內還本付息的債券,是企業依照法定程序發行.
⑦ 基點價格值的概述
有A、B、C三種債券,半年付息一次,下一次付息在半年後,相關資料如下:分別計算它們的基點價格值。
解:令收益率上升一個基點,從8%提高到8.01%,可以計算出,新的債券價格分別是:99.9595元、99.9321元、99.9136元,價格分別變動-0.0405元、-0.0679元和-0.0864元,基點價格分別是0.0405元、0.0679元和0.0864元。
令收益率下降一個基點,從8%減少到7.99%,新的債券價格分別是:100.0406元、100.0680元和100.0865元,價格分別變動0.0406元、0.0680元和0.0865元,基點價格值分別是0.0406元、0.0680元和0.0865元。
可以看到,收益率上升或下降一個基點時的基點價格值是近似相等的。由於收益率下降引起價格變動幅度比同等的收益率上升引起的價格變動幅度應該大一些,但是,這里由於收益率的變動很小(僅為一個基點),收益率上升或下降引起的價格波動是大致相等的。 一個債券組合由上例中的債券組成。其中,投資者持有債券A100張,債券B300張,債券C1000張。計算該債券組合的基點價格值。解:這里要求的是債券組合的基點價格值。我們可以根據每張債券的基點價格值,先求出每種債券的基點價格值,繼而得到整個債券組合的基點價格值。
債券組合基點價格值的計算
在確定投資策略時,除了基點價格值以外,投資者還有經常計算收益率變化大於一個基點時的價格波動。收益率變化任意多基點時的價格波動值的計算與基點價格值的計算大同小異,我們用例子來說明。
例: 利用上例中條件,分別計算收益率變動10個基點和100個基點時三種債券的價格波動值。
解:令收益率上升10個基點,從8%提高到8.1%,可以計算出,新的債券價格分別是:99.5955元、99.3235元、99.1406元,價格波動值分別變動0.4045元、0.6765元和0.8594元。
令收益率下降10個基點,從8%減少到7.9%,新的債券價格分別是:100.4066元、100.6825元和100.8699元,價格波動值分別變動0.4066元、0.6825元和0.8699元。
結合上例中基點價值對應的結果,我們可以總結出一條規律:當收益率變動的幅度較小時(例如10個基點),收益率變動n個基點,價格就近似變動基點價格值的n倍。由於收益率的變動較小,收益率下降或上升導致的價格波動仍然是大致相等的,價格波動的不對稱性可以被忽略。
如果繼續增大收益率波動的幅度,令收益率上升100個基點,從8%提高到9%,可以計算出,新的債券價格分別是:96.0436元、93.4960元、91.8556元,價格波動值分別變動0.4045元、0.6765元和0.8594元。
再令收益率下降100個基點,從8%減少到7%,新的債券價格分別是:104.1583元、107.1062元和109.1960元,價格波動值分別變動4.1583元、7.1062元和9.1960元。
可以看出,當收益率變動的幅度較大時(例如100個基點),就不能採用前面的近似方法,用基點價格值的n倍來估計價格的波動。另外,由於收益率的變動較大,價格波動的不對稱性也就表現出來,收益率下降或上升帶來的價格波動是不等的,我們通常會把兩者平均數作為價格波動值。在這個例子中,收益率變化100個基點時,三種債券的價格波動值分別是:
債券A:(3.9564+4.1583)/2=4.0574元
債券B:(6.5040+7.1062)/2=6.8051元
債券C:(8.1444+9.1960)/2=8.6702元
⑧ 債券組合基點價值計算
你的題干里1150里的第一個1應該是債券序號,其他兩處同理,前面的兄弟演算法沒錯
⑨ 根據市場價值,久期,求基點價值。
基點價格值是指到期收益率變化一個基點,也就是0.01個百分點時,債券價格的變動值。基點價格值是價格變化的絕對值,價格變化的相對值稱作價格變動百分比,它是價格變化的絕對值相對於初始價格的百分比,用式子表示就是:價格變動百分比=基點價格值/初始價格。
投資者只有準確衡量債券價格的波動性,才能規避利率風險,採取正確的投資策略。常簡單的價格波動性衡量方法:基點價格值。當然,還有其他的方法,比如,久期和凸性。
下面的例子來說明什麼是基點價格值。
例1:
有A、B、C三種債券,半年付息一次,下一次付息在半年後,相關資料如下:分別計算它們的基點價格值。
解:令收益率上升一個基點,從8%提高到8.01%,可以計算出,新的債券價格分別是:99.9595元、99.9321元、99.9136元,價格分別變動-0.0405元、-0.0679元和-0.0864元,基點價格分別是0.0405元、0.0679元和0.0864元。
令收益率下降一個基點,從8%減少到7.99%,新的債券價格分別是:100.0406元、100.0680元和100.0865元,價格分別變動0.0406元、0.0680元和0.0865元,基點價格值分別是0.0406元、0.0680元和0.0865元。
可以看到,收益率上升或下降一個基點時的基點價格值是近似相等的。由於收益率下降引起價格變動幅度比同等的收益率上升引起的價格變動幅度應該大一些,但是,這里由於收益率的變動很小(僅為一個基點),收益率上升或下降引起的價格波動是大致相等的。
在確定投資策略時,除了基點價格值以外,投資者還有經常計算收益率變化大於一個基點時的價格波動。收益率變化任意多基點時的價格波動值的計算與基點價格值的計算大同小異,我們用例子來說明。
例2:
利用上例中條件,分別計算收益率變動10個基點和100個基點時三種債券的價格波動值。解:令收益率上升10個基點,從8%提高到8.1%,可以計算出,新的債券價格分別是:99.5955元、99.3235元、99.1406元,價格波動值分別變動0.4045元、0.6765元和0.8594元。
令收益率下降10個基點,從8%減少到7.9%,新的債券價格分別是:100.4066元、100.6825元和100.8699元,價格波動值分別變動0.4066元、0.6825元和0.8699元。
結合上例中基點價值對應的結果,我們可以總結出一條規律:當收益率變動的幅度較小時(例如10個基點),收益率變動n個基點,價格就近似變動基點價格值的n倍。由於收益率的變動較小,收益率下降或上升導致的價格波動仍然是大致相等的,價格波動的不對稱性可以被忽略。
如果我們繼續增大收益率波動的幅度,令收益率上升100個基點,從8%提高到9%,可以計算出,新的債券價格分別是:96.0436元、93.4960元、91.8556元,價格波動值分別變動0.4045元、0.6765元和0.8594元。
再令收益率下降100個基點,從8%減少到7%,新的債券價格分別是:104.1583元、107.1062元和109.1960元,價格波動值分別變動4.1583元、7.1062元和9.1960元。
可以看出,當收益率變動的幅度較大時(例如100個基點),就不能採用前面的近似方法,用基點價格值的n倍來估計價格的波動。另外,由於收益率的變動較大,價格波動的不對稱性也就表現出來,收益率下降或上升帶來的價格波動是不等的,我們通常會把兩者平均數作為價格波動值。在這個例子中,收益率變化100個基點時,三種債券的價格波動值分別是:
債券A:(3.9564+4.1583)/2=4.0574元
債券B:(6.5040+7.1062)/2=6.8051元
債券C:(8.1444+9.1960)/2=8.6702元