導航:首頁 > 債券融資 > 債券量化交易策略

債券量化交易策略

發布時間:2021-07-19 02:57:45

① 在投行內部做量化交易與獨立出去做量化交易有何不同

這里我們只說量化交易,不討論量化研究和量化定價這一塊的業務。
量化交易是分兩個階段的。第一個階段是2008年以前,或者說Dodd-Frank法案以前,投行內部林立著各樣的很多對沖基金或者類對沖基金的實體,比如Morgan Stanley的PDT(Process Driven Trading)和高盛的Global Alpha,而很多投資銀行的自營交易業務也很像對沖基金。在這一階段,這些類對沖基金的實體和外面的對沖基金是沒有啥區別的,業務很類似——賭方向、做部分對沖(Partial Hedging)、跨市場套利,也非常敢於承擔風險
當時在投行內做對沖基金類型的量化交易有著非常大的優勢,因為兩點——第一是銀行有著非常良好的融資渠道,融資成本顯著地低於當時的對沖基金,如果你嘗試去組建過一個基金,你就知道資金成本對於一個對沖基金的影響多麼大——巴菲特這么多年的成功是離不開長期1.6倍的財務杠桿和其低於中央銀行存款准備金率的資金渠道的(詳細內容參見AQR的論文——Buffet's Alpha)。 炒股需要經常總結,積累,時間長了就什麼都會了。為了提升自身炒股經驗,新手前期可以私募風雲網那個直播平台去學習一下股票知識、操作技巧,對在今後股市中的贏利有一定的幫助。
第二是銀行有著一個灰色的信息流——客戶的交易記錄。這個交易信息,就是今天,也是非常有用的內部消息。幾周前Bill Gross從PIMCO離開時,所有投行的Sales都瘋了,不停地研究之前PIMCO在自己銀行的倉位,然後分析那些債券最有可能最先被清盤,從而給其它客戶交易建議。而當年文藝復興多次更迭合作的投行,就是因為其大獎章基金的交易記錄得不到妥善的保密,很多合作銀行的自營交易桌跟著交易。
這兩個優勢造成了當時的自營交易極其暴利,而且管理層為了做大業績,全力支持明星交易員放大杠桿——而實際上,金融危機期間很多的CEO都是靠著自營交易的暴利業績從交易大廳升職到管理層的——比如Citi的前任CEO Pandit和摩根斯坦利的前任John Mack。
這也造成了,為什麼很多高盛離職的自營交易員在金融危機後,當銀行不能做自營交易後出來自立門戶開設對沖基金,卻完全無法復制當年的業績——因為他們是因為整個組織的強大而獲得超額收益,當失去了資金優勢和信息優勢後,一切都成為了浮雲。
2008年,准確說是2009年後,一切都變了。
首先是政府明令規定自營交易不讓幹了,於是各種投行旗下的基金,放入資管部的放入資管部(比如Goldman Sachs Global Alpha進入GSAM),獨立營業的獨立營業(比如PDT從摩根斯坦利分離),要不直接就關門大吉了(比如UBS、德銀)。
還有一些碩果僅存的,一般是在股票交易部門,打著對沖為名,通過會計手法,維持著極小的自營規模,這種類似的團隊很多投行都有。但是不成氣候了,也不會造成任何系統性的風險——當然,各種馬路傳奇故事也銷聲匿跡了。
銀行內部還有沒有量化交易了,其實還有——那就是隨著計算機技術進步的自動化做市交易。做市在國內這個概念剛剛出現——因為期權做市商制度的引入。但是在美國這個是從華爾街開始就有的交易體系了。簡單來說,就是假設你經營一家買可樂的小店,你有兩個主要的交易——一是從總經銷商那裡拿貨,用的價格是Bid,二是分銷給街邊下象棋和夕陽下奔跑的孩子們,這是Ask。Bid是你的進價,Ask是你的出貨價格,Bid一般小於Ask(除非你是搞慈善的)。你持續的維持報出這兩個價格,同時根據你的存貨來調整報價或者對應報價的數量——比如你的存貨太多,大爺不出來下象棋了,你就降低Bid,這樣很難進到貨了,而保持Ask,等待有人來消耗你的庫存。
這個過程就是基本的做市商交易流程,在金融中,由於沒有實際的總經銷商供貨,你的報價(Bid-Ask)是基於你對於對應資產的Fair Price的估計來決定的,通常是你算出來的均衡價格加減一個值構造成Bid-Ask組合。在很長的時間內,這個報價都是靠人來完成,這個過程是枯燥的,而且很容易出錯——而對於期權類產品(非線性價格)也很難快速報價。我之前和期權交易員合作過很長時間,他們的工作不一定智力上很難,但是對於人得耐力絕對是一種挑戰——因為在開市後他們要注意力高度集中的報價,一quote兩quote,一quote兩quote,似爪牙,似魔鬼的步伐,報價,報價,在這交易大廳報價... ...
於是,從簡單的資產起,從交易所級別開始支持API交易了。什麼是簡單的資產,就是Vanilla類別的,比如個股、指數、外匯、國債等等。因此投行由於本來就是大量資產的做市商,開始把原來這套過程通過計算機來完成。後面大家發現計算機是完美勝任這項工作的,因為計算機能夠高速計算庫存來調整報價,還能報出很多復雜的單類型。因此從2000年開始個股、指數開始逐步被自動化做市來包攬,2005年後個股期權自動化做市大熱,而2008年後外匯自動化做市也相當成熟了,2010年開始國債自動化做市也在美國興起——這也是我目前在工作的內容。
那麼對沖基金呢,除了傳統的量化Alpha,他們難道不能也做這個業務嗎?實際上,很多對沖基金的自動化做市業務比投行還要好——比如Citadel,比如KCG。但是區別何在?區別在於兩點,第一是很多對沖基金不是專屬做市商(Designated market maker)。DMM的特權是其有專屬席位——在美國這樣高度商業化的國家,DMM也是非常稀有的。原因在於,DMM是有責任的,那就是在各種大型金融危機中,當流動性極差的時候,DMM還是要持續的報價,一quote兩quote,一quote兩quote,似爪牙,似魔鬼的步伐... ... 在流動很差的時候這是非常危險的,因為大家丟給你的都是不好的資產,比如大跌的時候,都在賣,你的Bid反復被Hit,然後又沒人來hit你的Ask,浮動虧損可以非常大。那麼DMM的特權呢,DMM可以獲得非常高比例的rebate,也就是說,傭金返點非常高。這是對於其承擔的義務的回報。

第二就是絕大多是對沖基金不是Broker,也是你一般想買股票不會去找他們報價。在外匯和債券這類市場中,有兩級市場,一個是B2C市場,也就是零售市場,裡面基本都是Broker-Client,而第二級就是B2B市場,都是Broker-Broker。一般來說,B2B市場的Bid Ask Spread要低一些。一個形象的例子就是,我小時候去批發書的商店買書,一個商店有本習題集沒有,於是老闆去隔壁家拿了一本,賣給我,最後肯定這個老闆要把一部分價格還給隔壁家,我付的價格和老闆付給隔壁家的價格就是B2C到B2B市場的差價。
這里投行又耍流氓了,他們有著B2C市場的接入優勢,因此只要客戶量夠大,基本都能把自動化做市實現盈利——因為根據大數法則,一定時間內,買賣雙方的交易量應該是均衡的。
那麼對沖基金靠什麼——靠更好的策略。對沖基金如果要做高頻做市的,基本在B2B市場參與,他們不是DMM,但是也自己去報價,然後靠著對於價格走向的准確判斷,來調整報價,實現拿到多數對自己有利的單,或者持有更久符合預測方向的單,來達到盈利。這種不是DMM卻自發去做做市商的行為,叫做Open Market Making。
Citadel是期權自動化做市的王者,頂峰時期一年的利潤可以到1 Billion(2009),而整個市場那年的利潤也就是7 Billion左右。因此如果策略逆天,沒有客戶流,也能靠做市賺錢的。
此外,做市業務之外,對沖基金還多了很多機會。因為很多業務銀行做起來不劃算——比如商品。考慮一個金融類公司,不能光討論交易策略,宏觀上你一定要思考資金成本等問題,這才是投資之道在投資之外。商品這些之前銀行幹了很多壞事的業務(詳細參加高盛的銅交易和JP的風電交易)都被監管方克以了極高的資本罰金。這是Basel III裡面的規定,也就是你拿著1元的股票和1元的監管資產過夜受到的處罰是完全不同的,具體演算法參見Basel對於RWA(Risk Weighted Asset)計算的細則。這一系列監管,造成了對沖基金有了大量的新業務——因為投行退出。而大量銀行的人才也流向了對沖基金。
現在門徑這么清晰,那麼投行和對沖基金做量化交易的工作差別就很明顯了——投行主要以自動化做市為中心的高頻信號、客戶流分析、報價博弈論等研究為主。而對沖基金主要是傳統的量化Alpha、量化資產配置為主——當然還有公開市場自動化做市了。
希望可以幫助到你,祝投資愉快!

② 量化交易是什麼它和量化寬松有什麼關系嗎

量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。

量化交易背後的邏輯是:一切因素都是可以數據化、量化、規則化的。這在一定程度是擁有足夠依據的。數字貨幣區塊鏈網路數據、技術指標自不必說,通過接入搜索引擎、社交媒體、公開社群,學習並判斷市場的非理性因素,市場的絕大部分「元材料」可以被來者不拒地吸收。從外部來看,用戶通過量化交易軟體API接入自己的交易所賬戶資產,通過上述過程輸出買入或者賣出(0或1)。

量化寬松作為一種金融救市手段,在國際舞台上愈發彰顯其存在感。簡而言之,量化寬松的形態就是「中央支援地方」,具體做法就是敲低利率、大購債券,向市場注入大量流動資金。對受困於突發性金融危機的企業和地方銀行來說,央行此時的形象無異於站在樓頂給各位撒錢,還撒得合理合法有理有據姿勢優美(誰讓它是印錢的呢)。

如果說量化寬松中的量化指的是央行在短時間內提高貨幣供應,從而降低市場利率以及為地方銀行提供流動性,那麼量化交易中的量化更強調通過一套被檢驗過的演算法將投資操作變得「AI化」,讓你的買入、賣出操作不再受市場情緒影響,同時還能解放你的雙眼、雙手和雙腳(如果用的到的話),讓心靈放個假。終極目標就是做到「躺著也能賺錢」。

③ 量化交易有什麼類型

閃牛分析:
概念
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。

特點
定量投資和傳統的定性投資本質上來說是相同的,二者都是基於市場非有效或弱有效的理論基礎。兩者的區別在於定量投資管理是「定性思想的量化應用」,更加強調數據。量化交易具有以下幾個方面的特點:
1、紀律性。根據模型的運行結果進行決策,而不是憑感覺。紀律性既可以剋制人性中貪婪、恐懼和僥幸心理等弱點,也可以克服認知偏差,且可跟蹤。
2、系統性。具體表現為「三多」。一是多層次,包括在大類資產配置、行業選擇、精選具體資產三個層次上都有模型;二是多角度,定量投資的核心思想包括宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度;三是多數據,即對海量數據的處理。
3、套利思想。定量投資通過全面、系統性的掃描捕捉錯誤定價、錯誤估值帶來的機會,從而發現估值窪地,並通過買入低估資產、賣出高估資產而獲利。
4、概率取勝。一是定量投資不斷從歷史數據中挖掘有望重復的規律並加以利用;二是依靠組合資產取勝,而不是單個資產取勝。
應用編輯
量化投資技術包括多種具體方法,在投資品種選擇、投資時機選擇、股指期貨套利、商品期貨套利、統計套利和演算法交易等領域得到廣泛應用。在此,以統計套利和演算法交易為例進行闡述。
1、統計套利
統計套利是利用資產價格的歷史統計規律進行的套利,是一種風險套利,其風險在於這種歷史統計規律在未來一段時間內是否繼續存在。
統計套利的主要思路是先找出相關性最好的若干對投資品種,再找出每一對投資品種的長期均衡關系(協整關系),當某一對品種的價差(協整方程的殘差)偏離到一定程度時開始建倉,買進被相對低估的品種、賣空被相對高估的品種,等價差回歸均衡後獲利了結。股指期貨對沖是統計套利較長採用的一種操作策略,即利用不同國家、地區或行業的指數相關性,同時買入、賣出一對指數期貨進行交易。在經濟全球化條件下,各個國家、地區和行業股票指數的關聯性越來越強,從而容易導致股指系統性風險的產生,因此,對指數間的統計套利進行對沖是一種低風險、高收益的交易方式。
2、演算法交易。
演算法交易又稱自動交易、黑盒交易或機器交易,是指通過設計演算法,利用計算機程序發出交易指令的方法。在交易中,程序可以決定的范圍包括交易時間的選擇、交易的價格,甚至包括最後需要成交的資產數量。
演算法交易的主要類型有: (1) 被動型演算法交易,也稱結構型演算法交易。該交易演算法除利用歷史數據估計交易模型的關鍵參數外,不會根據市場的狀況主動選擇交易時機和交易的數量,而是按照一個既定的交易方針進行交易。該策略的的核心是減少滑價(目標價與實際成交均價的差)。被動型演算法交易最成熟,使用也最為廣泛,如在國際市場上使用最多的成交加權平均價格(VWAP)、時間加權平均價格(TWAP)等都屬於被動型演算法交易。 (2) 主動型演算法交易,也稱機會型演算法交易。這類交易演算法根據市場的狀況作出實時的決策,判斷是否交易、交易的數量、交易的價格等。主動型交易演算法除了努力減少滑價以外,把關注的重點逐漸轉向了價格趨勢預測上。 (3) 綜合型演算法交易,該交易是前兩者的結合。這類演算法常見的方式是先把交易指令拆開,分布到若干個時間段內,每個時間段內具體如何交易由主動型交易演算法進行判斷。兩者結合可達到單純一種演算法無法達到的效果。
演算法交易的交易策略有三:一是降低交易費用。大單指令通常被拆分為若干個小單指令漸次進入市場。這個策略的成功程度可以通過比較同一時期的平均購買價格與成交量加權平均價來衡量。二是套利。典型的套利策略通常包含三四個金融資產,如根據外匯市場利率平價理論,國內債券的價格、以外幣標價的債券價格、匯率現貨及匯率遠期合約價格之間將產生一定的關聯,如果市場價格與該理論隱含的價格偏差較大,且超過其交易成本,則可以用四筆交易來確保無風險利潤。股指期貨的期限套利也可以用演算法交易來完成。三是做市。做市包括在當前市場價格之上掛一個限價賣單或在當前價格之下掛一個限價買單,以便從買賣差價中獲利。此外,還有更復雜的策略,如「基準點「演算法被交易員用來模擬指數收益,而」嗅探器「演算法被用來發現最動盪或最不穩定的市場。任何類型的模式識別或者預測模型都能用來啟動演算法交易。

潛在風險
量化交易一般會經過海量數據模擬測試和模擬操作等手段進行檢驗,並依據一定的風險管理演算法進行倉位和資金配置,實現風險最小化和收益最大化,但往往也會存在一定的潛在風險,具體包括:
1、歷史數據的完整性。行情數據不完整可能導致模型與行情數據不匹配。行情數據自身風格轉換,也可能導致模型失敗,如交易流動性,價格波動幅度,價格波動頻率等,而這一點是目前量化交易難以克服的。
2、模型設計中沒有考慮倉位和資金配置,沒有安全的風險評估和預防措施,可能導致資金、倉位和模型的不匹配,而發生爆倉現象。
3、網路中斷,硬體故障也可能對量化交易產生影響。
4、同質模型產生競爭交易現象導致的風險。
5、單一投資品種導致的不可預測風險。
為規避或減小量化交易存在的潛在風險,可採取的策略有:保證歷史數據的完整性;在線調整模型參數;在線選擇模型類型;風險在線監測和規避等。

④ 政府實行量化寬松政策,債券采購---如何理解簡單說的話可以如何表達

簡單的說政府實行量化寬松政策是指把更多的錢讓錢在自由市場上流通。一般國家,就是理解為寬松的財政政策或是貨幣政策。在美國,一般政府就是多印美鈔,降低貸款利率。把錢快速流入市場,解決一些類似於gdp增長力低下,購買力不足等問題。在中國,國家一般以寬松的貨幣政策和財政政策作為引導。財政上就是減輕稅務。貨幣上就是降低中央銀行的貨幣交易利率,並且購買各銀行所持有的國債,這樣是各銀行都要大量流通現金,加上cash rate低,銀行就能降低利率,錢就更多地流入市場。

⑤ 中國量化交易的現狀與未來前景如何

在歐美市場,特別是在美國,量化交易已經非常成熟。在過去的十年裡,美國的對沖基金逐漸轉向了量化交易。我國的數量發展還不到歐美國家的水平,還處於比較初級的階段。但由於國內市場人口基數大,意味著國內市場潛力很大。

雖然短期內我量化貿易的發展還不如美國成熟,但最終的發展方向應該是相似的。通過對量化交易策略的研究,我們可以預測量化交易的未來前景。一個成熟的量化交易市場是值得我們學習的量化交易策略和理論,也是未來的發展方向。目前我國股市的有效性還不高,但隨著量化投資能力的提高,市場的有效性會進一步提高,技術的波動會越來越小,技術的量化可能會達到瓶頸,從而轉向基本面量化。

⑥ 為什麼量化交易總是賺不到錢

量化投資主要應用於期貨交易、ETF套利、條件選股、權證套利交易等

圖片來源:凱納量化投資

「你炒期貨嗎?」
「不炒,我賺的是血汗錢,您賺的是心跳錢。」
這是一位期貨門外漢跟一位期貨投資者的對話。的確,期貨因其高風險高收益的特徵,參與者很多都是心驚肉跳的。不過,近年來引入國內的量化交易,正逐漸改變這一情況。
上周六,東莞本土唯一期貨公司——華聯期貨聯合量化交易的相關投資機構,在東莞舉辦了一場題為「量化交易,打開財富之門」的量化交易策略交流會。與一般的投資報告會人流稀少相反,該交流會可謂人滿為患,原定的百餘人參與的會議室,最終擠進了近200名投資者,以至酒店空調開到最大仍顯十足燥熱。
近幾年量化交易發展迅猛
對多數普通投資者而言,量化交易仍是一個較為陌生的概念,但該模式已在國內流行了數十年。2010年,國內股指期貨上市,成交量在兩年內增加了1.4倍,為量化交易提供了極佳的交易標的,國內量化交易便快速發展。
據華聯期貨介紹,2012年上半年,量化交易量占國內證券市場總交易量8%左右,但占股指期貨交易量的比例已達20%左右。目前,絕大部分的券商和期貨公司開始進行量化交易,部分私募公司和個人投資者也開始使用量化交易產品。
事實上,3年多來,在股市連續下跌的大環境中,傳統投資策略紛紛失效,而一批以股指期貨、商品期貨、債券為投資標的,以量化投資、程序化交易為工具的新興投資方式,卻在國內投資市場嶄露頭角,並實現了較為穩定的收益。
「傳統投資策略依靠人的主觀感覺來投資;而量化投資是根據數學統計模型,由計算機來實現自動化交易。」國信證券東莞營業部財富管理中心負責人林玉偉指出,量化投資的應用涵蓋幾乎所有金融投資領域,是在計算機和網路的支持下,把人腦投資策略編寫成語言程序,由計算機觸發買賣條件,完成自動化交易的投資方式,實際上是傳統投資的嚴謹化。
據華聯期貨介紹,量化投資目前主要應用於期貨交易、ETF套利、條件選股、權證套利交易等,主流平台包括文華財經、交易開拓者、金字塔,此外Multicharts、龍軟、高手、金錢豹、Yesterday等平台在業內的使用也較為廣泛。
量化投資東莞「試水」告捷
在東莞本土,也有多家機構在試水量化投資,包括證券公司、期貨公司和私募投資公司,從目前情況來看,可謂「試水」告捷。
如華聯期貨去年推出了「金莞家」程序化系列產品,其中「智贏股指組合策略」是其首個專項個性化交易模型組合,該模型組合通過對兩年多來股指期貨運行特點進行量化分析,形成了八套獨有的程序化交易模型,模型運行以來,年化收益率最高的逾60%,最低的也有26%,但最大回撤不足10%。
國信證券東莞營業部則成立專門的「量化投資中心」,該營業部去年就有20多個不同時期參與股指期貨程序化交易的客戶,表現最好的賬戶年化收益率近40%,所有賬戶全部戰勝大盤。
發行了國內首隻多重策略對沖基金的東莞莞香資本投資公司,更是量化投資的「擁躉」,該公司目前的專戶產品全部採取量化投資方式,且收益不錯。如其旗下某專戶理財產品,2012年6月19日-2013年5月19日的凈值增長達41%。
「量化產品的特點就是任何行情階段都能盈利。」國信證券東莞營業部投資顧問蔡恩俠告訴記者,量化產品一般都是多空對沖,因此無論牛熊市均能盈利,不過其也有弱點,即牛市跑不贏一般的股票類投資產品,「2007年大牛市,也就30%左右的收益,但2008年大熊市也有15%左右的收益。」
「資金不會一直朝一個方向直線形地前進,資金增值是一個艱難的曲折前進過程。」莞香資本CEO江國棟則提醒道,回撤即是資金增長行進中的停頓,也可看做是期貨交易的機會成本。「因此,必須正確看待策略參數優化結果,不刻意追求最高收益,不過度擬合行情;同時,堅持正確的交易理念和交易方法,嚴格執行和堅持不懈是持續盈利的前提。」
量化投資的應用涵蓋幾乎所有金融投資領域,是在計算機和網路的支持下,把人腦投資策略編寫成語言程序,由計算機觸發買賣條件,完成自動化交易的投資方式,實際上是傳統投資的嚴謹化。
投資辭典
何謂量化交易
量化交易(Quantitative Trading),即使用現代統計學和數學工具,藉助計算機建立數量模型,制定策略,嚴格按照既定策略交易。具體又可分為高頻交易和非高頻交易,其中非高頻交易適合一般個人投資者和中小機構。

⑦ 什麼是量化投資

量化投資指的是一種投資方法,它是指通過數量化方式或計算機程序化發出買賣指令,以得到穩定收益為目標的交易方式。量化投資是一種定性思想的量化應用,它對大量的指標數據進行分析,得出一些有說服力的數據結論,然後通過計算機技術進行數學建模,並進行量化分析,從而得出一個比較契合實際的投資策略。
量化投資是指通過數量化方式及計算機程序化發出買賣指令,以獲取穩定收益為目的的交易方式。在海外的發展已有30多年的歷史,其投資業績穩定,市場規模和份額不斷擴大、得到了越來越多投資者認可。從全球市場的參與主體來看,按照管理資產的規模,全球排名前四以及前六位中的五家資管機構,都是依靠計算機技術來開展投資決策,由量化及程序化交易所管理的資金規模在不斷擴大。

⑧ 量化對沖領域有哪些經典的策略和傳奇人物

阿斯內斯是法瑪在芝加哥大學指導的金融博士,其博士畢業論文在三因子模型的基礎上加入了動量因子,以四因子模型的形式完成了一系列的實證分析。博士畢業後阿斯內斯進入高盛,成為了一名量化交易分析員,隨後在高盛組建了全球阿爾法基金,主要從事以量化為導向的交易工作,業績不俗。1997年他離開高盛創辦了自己的AQR資本管理公司,目前該公司是全球頂尖的對沖基金之一。雖然沒有直接的證據證明阿斯內斯在工作中採用的是多因子模型基礎上的股價預測技術,但是可以想見的是,市值、賬面市值比、動量因子和因子模型應該與其量化交易策略存在一定的關聯。阿斯內斯在一些訪談和學術論文中也時常談到價值、動量/趨勢、低風險、套息等相關概念,是為佐證。

由學術研究進入量化交易實業領域的一個更為極端的例子,應該是文藝復興科技公司的西蒙斯,這也是中國讀者較為熟悉的一個量化交易從業者。西蒙斯於1961年在加州大學伯克利分校取得數學博士學位,年僅23歲,並在30歲時就任紐約州立大學石溪分校數學學院院長。他在1978年離開學校創立了文藝復興科技公司,該公司因為旗下的量化旗艦基金——大獎章基金傲人的業績而聞名。關於西蒙斯所使用的量化交易策略,坊間一直有諸多猜測。許多人認為其所使用的應該是基於隱馬爾科夫模型的量化交易策略,原因在於西蒙斯的早期合夥人鮑姆是隱馬爾科夫模型估計演算法的創始人之一,同時文藝復興科技公司招聘了大量的語音識別專家,隱馬爾科夫模型正是語音識別領域的一個重要技術工具。作者對這一說法持懷疑態度,不過不管怎樣,從文藝復興科技公司比較另類的人員構成來看,這應該是一個比較純正的使用量化交易策略進行運作的對沖基金公司。

雖然大部分的量化對沖基金正在使用的交易策略都或多或少的進行保密,但是仍然有一些量化交易策略在多年的使用後開始慢慢為外界所熟知,統計套利就是其中之一。這個策略的概念最早產生於摩根斯坦利,當時的做法也被稱為配對交易,實際上就是使用統計的方法選取一對歷史價格走勢相似的股票,當兩支股票之間的價格差距變大、超出一定閾值之後,就分別做多和做空這兩支股票,依靠該價格差在隨後的時間里回歸到正常水平來獲取收益。由於這種量化交易策略既源自於統計分析、又存在等待價差回歸的套利特性,因此被稱之為統計套利。而隨著對這類交易策略的進一步深入研究,統計套利策略目前已經遠遠超出了配對交易的范疇,變得更加的復雜和多樣化。

肖曾經是摩根斯坦利這個統計套利交易組的成員之一,他於1980年在斯坦福大學獲得計算機博士學位,隨後留校進行學術研究。肖在1986年加入摩根斯坦利後負責該組的技術部門,但是在兩年之後、如同統計套利的首創者班伯格(注)一樣、由於政治斗爭等原因從公司離職,並創立了自己的德劭基金公司。結合了肖的大規模並行計算研究背景和在摩根斯坦利接觸到的統計量化策略,德劭基金公司利用計算機量化模型作為主要的策略進行交易並取得了巨大的成功。值得一提的時,肖在對沖基金領域紮根之後,仍然不忘科學研究,其成立的德劭研究公司致力於通過強大的計算機硬、軟體能力在分子動力學模擬等生化科研領域取得前沿性進展。這與阿斯內斯一直在金融雜志上發表學術論文的行為,相映成趣,當然肖的學術研究相對而言可能更為極客一些。

相比起統計套利,傳統意義上的套利策略是一個更為人熟知、更經典的量化交易策略。實際上現代金融框架的一部分都是基於「無套利」這樣一個假設原則建立起來的,可見套利策略的深入人心與重要性。如果說統計套利的重點在於刻畫和預測多個資產間的統計關系,那麼傳統套利可能就更重注於各個資產的價值計算,以及策略執行時的交易成本估計和優化。只不過量化交易策略進化到現在,統計套利和傳統的套利策略已經是互相滲透、互相融合的了。以計算機能力見長的德劭基金公司,對這兩種套利策略應該都是有所涉及的。

說起套利,不得不提到長期資本管理公司。這家公司的陣容十分豪華,包括債券套利的先驅梅里韋瑟、兩位諾貝爾獎獲得者莫頓和斯科爾斯、美聯儲副主席穆林斯等諸多頂級從業者,主要從事的正是債券的量化套利交易,當然其中也會包含一些其他形式策略的成分。公司成立的前三年間表現非常出色,但是在1998年俄羅斯國債違約之後,相關的連鎖反應使得公司產生巨大虧損,在美聯儲的干預下被華爾街幾家公司出資接管,形同倒閉。實際上,長期資本管理公司在俄羅斯債券上的損失本身並不大,但是許多大金融機構在虧損環境下必須保證足夠的資本量,因此通過出售流動性較好的七大工業國債券等資產來減低風險、增加資本,全球主要債券價格在賣出壓力下大幅下跌,波動巨大,這才導致了杠桿極大的長期資本管理公司在債券套利上產生巨額虧損。

⑨ 什麼是量化交易,未來前景如何知道的講講。

國外量化交易已經發展了40年左右,量化交易程序換交易佔比60%,量化基金規模達到30個億美元,而國內量化交易起步較晚第一隻量化基金在2004年左右,至今量化交易規模不過2萬億RMB,國內現在的量化人才也很缺失,隨著過來一批量化交易的海龜回來從事量化交易會一定程度帶動行業的發展,但是仍需一定時間,加上國內量化交易政策還不夠明朗,整體來說量化交易在國內還是一年藍海,但是路途並非坦途。

閱讀全文

與債券量化交易策略相關的資料

熱點內容
地獄解剖類型電影 瀏覽:369
文定是什麼電影 瀏覽:981
什麼影院可以看VIP 瀏覽:455
受到刺激後身上會長櫻花的圖案是哪部電影 瀏覽:454
免費電影在線觀看完整版國產 瀏覽:122
韓國雙胞胎兄弟的愛情電影 瀏覽:333
法國啄木鳥有哪些好看的 瀏覽:484
能看片的免費網站 瀏覽:954
七八十年代大尺度電影或電視劇 瀏覽:724
歐美荒島愛情電影 瀏覽:809
日本有部電影女教師被學生在教室輪奸 瀏覽:325
畸形喪屍電影 瀏覽:99
美片排名前十 瀏覽:591
韓國電影新媽媽女主角叫什麼 瀏覽:229
黑金刪減了什麼片段 瀏覽:280
泰國寶兒的電影有哪些 瀏覽:583
3d左右格式電影網 瀏覽:562
跟師生情有關的電影 瀏覽:525
恐怖鬼片大全免費觀看 瀏覽:942
電影里三節是多長時間 瀏覽:583