『壹』 久期的計算的計算公式是什麼
如果市場利率是Y,現金流(X1,X2,...,Xn)的麥考利久期定義為:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期現金流的現值,D表示久期。
(1)如何算債券加權久期擴展閱讀:
久期定理
定理一:只有零息債券的馬考勒久期等於它們的到期時間。
定理二:直接債券的馬考勒久期小於或等於它們的到期時間。
定理三:統一公債的馬考勒久期等於(1+1/y),其中y是計算現值採用的貼現率。
定理四:在到期時間相同的條件下,息票率越高,久期越短。
定理五:在息票率不變的條件下,到期時間越久,久期一般也越長。
定理六:在其他條件不變的情況下,債券的到期收益率越低,久期越長。
『貳』 計算債券的久期
時期 現金流 現金流量的現值 t*PVCF^b
1 6 5.6603 5.6603
2 6 5.3400 10.6800
3 106 88.9996 266.9988
總計 100.0000 283.3391
久期=283.3391/100/1.06=2.52
久期即收益率變動一個百分點所引起的價格變動的近似百分比
用泰勒展開價格函數的公式
dP=dP/dY*dY+0.5d^2P/(dY)^2+誤差項
這個式子里第一項是久期第二項就是凸性
凸性就是價格函數的二階導數,是為了更准確的計算收益率的變動導致的債券價格的變動
『叄』 哪位大神幫忙解答下久期是什麼啊 書上說是加權的平均到期日現在我有兩種理解,第一是: 每一期
久期,也可以翻譯為麥考利持續時間。是由到期收益率的定義推導出來的。到期收益率公式知道吧,等式兩邊分別對到期收益率y求導,再在等式兩邊同除以價格p,就將其中一部分定義為d久期。
久期是一種測算債券發生現金流的平均期限的方法,可以用於測度債券對利率變化的敏感性。
弗雷得里克.麥考利根據債券的每次息票利息和本金支付時間的的加權平均來計算久期,稱為麥考利久期
(macaulay's
ration)。具體的計算將每次債券現金流的現值除以債券價格得到每一期現金支付的權重,並將每一次現金流的時間同對應的權重相乘,最終合計出整個債券的久期。
久期是固定收入資產組合管理的關鍵概念有以下幾個原因:
1、它是對資產組合實際平均期限的一個簡單概括統計。
2、它被看做是資產組合免疫與利率風險的重要工具。
3、是資產組合利率敏感性的一個測度,久期相等的資產對於利率波動的敏感性一致。
到期時間、息票率、到期收益率是決定債券價格的關鍵因素,與久期存在以下的關系:
1、零息票債券的久期等於到它的到期時間。
2、到期日不變,債券的久期隨息票據利率的降低而延長。
3、息票據利率不變,債券的久期隨到期時間的增加而增加。
4、其他因素不變,債券的到期收益率較低時,息票債券的久期較長。
麥考利久期定理:關於麥考利久期與債券的期限之間的關系存在以下6個定理:定理1:只有貼現債券的麥考利久期等於它們的到期時間。定理2:直接債券的麥考利久期小於或等於它們的到期時間。只有僅剩最後一期就要期滿的直接債券的麥考利久期等於它們的到期時間,並等於1。定理3:統一公債的麥考利久期等於(1+1/r),其中r是計算現值採用的貼現率。定理4:在到期時間相同的條件下,息票率越高,久期越短。定理5:在息票率不變的條件下,到期時期越長,久期一般也越長。定理6:在其他條件不變的情況下,債券的到期收益率越低,久期越長。
『肆』 關於債券組合久期的計算
債券組合的久期,是按照市值加權計算的,A債券的權重是60%,B債券的權重是40%
組合的久期=60%*7+40%*10=8.2
『伍』 債券組合久期的計算方法
債券組合的久期等於每隻債券久期的加權平均,權數用持有該債券的市值占債券持有量市值的比重。
『陸』 關於久期的解釋和計算方法
久期也稱持續期,是1938年由F.R.Macaulay提出的。它是以未來時間發生的現金流,按照目前的收益率折現成現值,再用每筆現值乘以現在距離該筆現金流發生時間點的時間年限,然後進行求和,以這個總和除以債券各期現金流折現之和得到的數值就是久期。
『久期,全稱麥考利久期-Macaulay ration, 數學定義:
如果市場利率是Y,現金流(X1,X2,...,Xn)的麥考利久期定義為:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期現金流的現值,D表示久期。
Macaulay Duration Example
Macaulay Duration Example
通過下面例子可以更好理解久期的定義。
例子:假設有一債券,在未來n年的現金流為(X1,X2,...Xn),其中Xi表示第i期的現金流。假設利率為Y0,投資者持有現金流不久,利率立即發生升高,變為Y,問:應該持有多長時間,才能使得其到期的價值不低於利率為Y0的價值?
通過下面定理可以快速解答上面問題。
定理:PV(Y0)*(1+Y0)^q<=PV(Y)(1+Y)^q的必要條件是q=D(Y0)。這里D(Y0)=(X1/(1+Y0)+2*X2/(1+Y0)^2+...+n*Xn/(1+Y0)^n)/PV(Y0)
q即為所求時間,即為久期。
上述定理的證明可通過對Y導數求倒數,使其在Y=Y0取局部最小值得到。
在債券分析中,久期已經超越了時間的概念。修正久期大的債券,利率上升所引起價格下降幅度就越大,而利率下降所引起的債券價格上升幅度也越大。可見,同等要素條件下,修正久期小的債券比修正久期大的債券抗利率上升風險能力強;但相應地,在利率下降同等程度的條件下,獲取收益的能力較弱。
正是久期的上述特徵給我們的債券投資提供了參照。當我們判斷當前的利率水平存在上升可能,就可以集中投資於短期品種、縮短債券久期;而當我們判斷當前的利率水平有可能下降,則拉長債券久期、加大長期債券的投資,這就可以幫助我們在債市的上漲中獲得更高的溢價。
『柒』 債券久期計算
求解:
時間t 息票額 折現因子1/(1+y) 折現值 時間加權值
1 8 0.91 7.28 7.28
2 8 0.8281 6.62 13.24
3 8 0.7536 6.03 18.09
3 100 0.7536 75.36 226.08
合計 95.29 264.69
久期=264.69/95.29=2.78
修正久期=久期/(1+0.1)=2.53
P'=-修正久期*債券價格*利率變化=-2.53*95.29*0.01=-2.41元,即央行調高利率到11%,債券價格下跌2.41元
『捌』 什麼是債券修正久期,具體怎麼計算 / 債券
修正久期指的是對於給定的到期收益率的微小變動,債券價格的相對變動與其麥考利久期為正變關系。這種正變關系只是一種近似的比例關系,它的成立是以債券的到期收益率很小為前提的。當然,為了更精確地描述債券價格對於到期收益率變動的靈敏性,又引入了修正久期模型,考慮凸度。
公式:△P/P≈-D*×△y+(1/2)*conv*(△y)^2
『玖』 久期如何計算
1.先將債券的價格轉換成收益率 2.計算債券的凈價 由於債券有隨著日子增長,債券價值自然增長的性質( 也就是應計利息會逐日增加),到付息日時又會自動減少( 因為拿到了利息),因此使得債券的久期出現不連續的現象。 因此合理的久期定義是看利率發生改變時, 債券的內含價值發生多少的改變,因為利率改變後, 債券的應計利息不會跟著改變,因此應計利息與利率風險無關, 必須剔除。 3.計算利息上升與下降後的凈價 將相同的現金流、現金流現值、全價、凈價等公式復制到下方, 更改收益率為原有收益率加上1個BP: 4.計算久期套用久期公式,便可以把債券久期計算出來。
『拾』 資產加權久期是什麼概念!
每種資產都有久期(如銀行的貸款、持有的債券等),如果你同時持有多種資產,那麼就有必要計算資產組合的久期。資產加權久期是計算資產組合久期的方法,即用資產的市價為權數加權平均得到資產組合的久期。