㈠ 現值的計算公式(單利和復利) 原公式和例題
單利 利息=本金*利率*年份
本息和=本金*(1+利率*年份)
復利 本息和=本金*(1+利率)V年份
例子有很多,可以自己找.
㈡ 單利計息與復利計息對現值與終值的計算分別有什麼影響
復利計算和單利計息的差別復利計算和單利計息的差別在於,單利計算方法中期限是在括弧中與年利率直接相乘;而在復利計算中,期限是作為指數,在括弧之外的。如果投資的期限相同,而且投資的年利率也一樣,那麼前者的值要大於後者的值,因此,在復利計息方式下計算出來的到期還本付息額要大於單利方式下計算出來的數值,並且期限越長,這兩個值之間的差額越大。同樣是100元的資金,每年的利率都是2.00%,用單利法和復利法分別進行投資,期限越長,差距越大。原因是在復利法下所得到的利息收入被不斷地再投資並且不斷地得到新的收益。那麼為什麼會有單利法和復利法之間的差別呢?單利法計算簡單,操作容易,也便於理解,因此銀行存款計息和到期一次還本付息的國債都採取單利計息的方式。但是對於投資者而言,每一期收到的利息都是會進行再投資的,不會有人把利息收入原封不動地放在錢包里,至少存入銀行也是會得到活期存款的收益的。因此復利法是更為科學的計算投資收益的方法。特別是復利法的現值計算,這個公式決定了你當前應該付出多少資金來取得未來固定的收入,所有對債券定價的分析,都是圍繞著這個問題而展開的。單利情況銀行的儲蓄存款利率都是按照單利計算的。所謂單利,就是只計算本金在投資期限內的時間價值(利息),而不計算利息的利息。這是利息計算最簡單的一種方法。單利利息的計算公式為:I=P0×r×n其中:I為到期時的利息,P0為本金,r為年利率,n為期限;※例:Peter的投資回報Peter現在有一筆資金1 000元,如果進行銀行的定期儲蓄存款,期限為3年,年利率為2.00%,那麼,根據銀行存款利息的計算規則,到期時Peter所得的本息和為:1 000+1 000×2.00%×3=1 060(元)。按照每年2.00%的單利利率,1 000元本金在3年內的利息為60元。那麼反過來說,如果按照單利計算,3年後的1 060元相當於現在的多少資金呢?這就是所謂的「現值」問題。現值,是在給定的利率水平下,未來的資金折現到現在時刻的價值,是資金時間價值的逆過程。
㈢ 採用單利法計算終值和現值與採用復利法計算終值和現值有哪些差別
復利計算和單利計息的差別
復利計算和單利計息的差別在於,單利計算方法中期限是在括弧中與年利率直接相乘;而在復利計算中,期限是作為指數,在括弧之外的。如果投資的期限相同,而且投資的年利率也一樣,那麼前者的值要大於後者的值,因此,在復利計息方式下計算出來的到期還本付息額要大於單利方式下計算出來的數值,並且期限越長,這兩個值之間的差額越大。
同樣是100元的資金,每年的利率都是2.00%,用單利法和復利法分別進行投資,期限越長,差距越大。原因是在復利法下所得到的利息收入被不斷地再投資並且不斷地得到新的收益。
那麼為什麼會有單利法和復利法之間的差別呢?單利法計算簡單,操作容易,也便於理解,因此銀行存款計息和到期一次還本付息的國債都採取單利計息的方式。但是對於投資者而言,每一期收到的利息都是會進行再投資的,不會有人把利息收入原封不動地放在錢包里,至少存入銀行也是會得到活期存款的收益的。因此復利法是更為科學的計算投資收益的方法。
特別是復利法的現值計算,這個公式決定了你當前應該付出多少資金來取得未來固定的收入,所有對債券定價的分析,都是圍繞著這個問題而展開的。單利情況
銀行的儲蓄存款利率都是按照單利計算的。所謂單利,就是只計算本金在投資期限內的時間價值(利息),而不計算利息的利息。這是利息計算最簡單的一種方法。
單利利息的計算公式為:I=P0×r×n其中:I為到期時的利息,P0為本金,r為年利率,n為期限;※例:Peter的投資回報Peter現在有一筆資金1 000元,如果進行銀行的定期儲蓄存款,期限為3年,年利率為2.00%,那麼,根據銀行存款利息的計算規則,到期時Peter所得的本息和為:1 000+1 000×2.00%×3=1 060(元)。
按照每年2.00%的單利利率,1 000元本金在3年內的利息為60元。那麼反過來說,如果按照單利計算,3年後的1 060元相當於現在的多少資金呢?這就是所謂的「現值」問題。
現值,是在給定的利率水平下,未來的資金折現到現在時刻的價值,是資金時間價值的逆過程。
對現值影響:一定金額採用單利計算的現值較大;採用復利計算的現值較小,
對終值影響:一定金額採用單利計算的終值較小;採用復利計算的終值較大。
同樣金額採用單利計算的現值較大而復利計算的現值較小 :採用單利計算的終值較小而採用復利計算的終值較大。
㈣ 單利和復利
復利計算和單利計息的差別
復利計算和單利計息的差別在於,單利計算方法中期限是在括弧中與年利率直接相乘;而在復利計算中,期限是作為指數,在括弧之外的。如果投資的期限相同,而且投資的年利率也一樣,那麼前者的值要大於後者的值,因此,在復利計息方式下計算出來的到期還本付息額要大於單利方式下計算出來的數值,並且期限越長,這兩個值之間的差額越大。
同樣是100元的資金,每年的利率都是2.00%,用單利法和復利法分別進行投資,期限越長,差距越大。原因是在復利法下所得到的利息收入被不斷地再投資並且不斷地得到新的收益。
那麼為什麼會有單利法和復利法之間的差別呢?單利法計算簡單,操作容易,也便於理解,因此銀行存款計息和到期一次還本付息的國債都採取單利計息的方式。但是對於投資者而言,每一期收到的利息都是會進行再投資的,不會有人把利息收入原封不動地放在錢包里,至少存入銀行也是會得到活期存款的收益的。因此復利法是更為科學的計算投資收益的方法。
特別是復利法的現值計算,這個公式決定了你當前應該付出多少資金來取得未來固定的收入,所有對債券定價的分析,都是圍繞著這個問題而展開的。
單利情況
銀行的儲蓄存款利率都是按照單利計算的。所謂單利,就是只計算本金在投資期限內的時間價值(利息),而不計算利息的利息。這是利息計算最簡單的一種方法。
單利利息的計算公式為:
I=P0×r×n
其中:I為到期時的利息,P0為本金,r為年利率,n為期限;
※例:Peter的投資回報
Peter現在有一筆資金1 000元,如果進行銀行的定期儲蓄存款,期限為3年,年利率為2.00%,那麼,根據銀行存款利息的計算規則,到期時Peter所得的本息和為:
1 000+1 000×2.00%×3=1 060(元)。
按照每年2.00%的單利利率,1 000元本金在3年內的利息為60元。那麼反過來說,如果按照單利計算,3年後的1 060元相當於現在的多少資金呢?這就是所謂的「現值」問題。
現值,是在給定的利率水平下,未來的資金折現到現在時刻的價值,是資金時間價值的逆過程。
按照單利法,從將來值計算現值的方法很簡單。我們以Vp表示現值,Vf表示將來值,則有
Vf=Vp×(1+r×n)這里r表示投資的利率,n表示期限,通常以年為單位。把這個公式反過來,就得到現值的計算公式:
※例:Peter的投資回報
Peter想在3年後收入1 060元,那麼他現在應該存多少錢進入銀行?銀行當前的3年期存款年利率為2.00%,那麼,根據單利現值的計算公式
Peter現在就要存入1 000元才能保證3年後有1 060元的收入。
復利情況
所謂復利,是指在每經過一個計息期後,都要將所生利息加入本金,以計算下期的利息。這樣,在每一計息期,上一個計息期的利息都要成為生息的本金,即以利生利,也就是俗稱的「利滾利」。
※例:Peter的投資回報
Peter的一筆資金的數額為1 000元,銀行的1年期定期儲蓄存款的利率為2.00%。Peter每年初都將上一年的本金和利息提出,然後再一起作為本金存入1年期的定期存款,一共進行3年。那麼他在第3年末總共可以得到多少本金和利息呢?這項投資的利息計算方法就是復利。
在第一年末,共有本息和為:
1 000+1 000×2.00%=1 020(元)
隨後,在第一年末收到的本息和作為第二年初的投資本金,即利息已被融入到本金中。因此,在第二年末,共有本息和為:
1 020+1 020×2.00%=1 040.40(元)
依此類推,在第三年末,共有本息和為:
1 040.40+1 040.40×2.00%=1 061.21(元)
復利計息方式下到期的本息和的計算原理就是這樣。這種方法的計算過程表面上太復雜了,但事實並非如此。上述的Peter資金本息和的計算過程實際上可以表示為:
1 000×(1+2.00%)×(1+2.00%)×(1+2.00%)=1 000×(1+2.00%)3=1 061.21(元)
和單利法一樣,我們以Vp表示現值,Vf表示將來值,則有
Vf=Vp×(1+r)^n
這里r表示投資的利率,n表示期限,通常以年為單位。
把這個公式反過來,就得到現值的計算公式:
※例:Peter的投資回報
Peter想在三年後收入1 061.21元,如果按照復利的投資方法,他現在應該存多少錢進入銀行?銀行當前的1年期存款利率為2.00%,那麼,根據復利現值的計算公式:
Peter現在就要存入1 000元才能保證3年後有1 061.21元的收入。當然,Peter必須每年都把本金和利息收入合並起來進行新的投資,才會得到1 061.21元這個結果。
請你務必仔細地理解這個例子,這個例子是以後所有債券定價分析的基礎。復利法的現值公式決定了你當前應該付出多少資金來取得未來的預期收入,而債券的定價分析,就是圍繞著這個問題展開的。
㈤ 單利現值和復利現值的計算方法
1、單利
單利是計算利息的一種方法。按照這種方法,只要本金在計息周期中獲得利息,無論時間多長,所生利息均不加入本金重復計算利息。
單利利息的計算公式為:I=PV×i×t
式中:I為利息;PV為本金;i為年利率;t為計息時間。
單利終值的計算公式為:FV=PV×(1+i×t)
單利現值的計算公式為:PV=FV/(1+i×t)≈FV×(1-i×t)
2、復利
復利是計算利息的另一種方法。按照這種方法,每經過一個計息期,要將所生利息加入本金再計利息。
復利終值的計算公式為:FV=PV×(1+i)n
式中:(1+i)n稱為復利終值系數或1元的復利終值,用符號(FV,i,n)表示。
復利現值的計算公式為:PV=FV/(1+i)n=FV×(1+i)-n
式中:(1+i)-n稱為復利現值系數或1元的復利現值,用符號(PV,i,n)表示。
(5)債券終值單利和復利計算公式擴展閱讀
結論:
(1)復利終值和復利現值互為逆運算;
(2)復利終值系數(1+i)n和復利現值系數1/(1+i)n互為倒數。
(3)如果其他條件不變,當期數為1時,復利終值和單利終值是相同的。
(4)在財務管理中,如果不加註明,一般均按照復利計算。
㈥ 單利與復利的計算方法
一、單利計算:僅用本金計算利息,不計算利息所產生的利息。
利息發生在計息周期末。如果有n個計息周期,則L=P×i×n
到投資期末,本金與利息之和(本利和),則F=P(1+i.n)
其中:n—計息周期數 F—本利和
例:某人存入銀行1000元,定期為3年,年利率為13%,3年後本利和為?
F=P(1+i.n)=1000(1+0.13×3)=1390元
二、復利計算:除了本金利息外,還要計算利息產生的利息。
例:某人存入銀行1000元,定期為3年,年利率為13%,3年後本利和為?
若採用復利計算則:F=P(1+i.n)3=1000(1+0.13×1)3=1442.89(元)
復利計算的特點是:把上期末的本利和作為下一期的本金,在計算時每一期本金的數額是不同的。復利的本息計算公式是:F=P(1+i)^n。
(6)債券終值單利和復利計算公式擴展閱讀:
單利現值的計算
1、在現實經濟生活中,有時需要根據終值來確定其現在的價值即現值。例如,在使用未到期的票據向銀行申請貼現時,銀行按一定利率從票據的到期值中扣除自借款日至票據到期日的應計利息,將餘額付給持票人,該票據則轉歸銀行所有。
2、貼現時使用的利率稱貼現率,計算出來的利息稱貼現息,扣除貼現息後的餘額稱為現值。
3、單利現值的計算公式為:P=F-I=F-P×i×t=F/(1+i×n)
4、假設在上例中,企業因急需用款,憑該期票於6月27日到銀行辦理貼現,銀行規定的貼現率6%。因該期票8月14日到期,貼現期為48天。銀行付給企業的金額為:
P=1208/(1+6%×48/360)==1208/1.008=1198.4127。
㈦ 計算題某企業投資 100000 元購買利率為 12% 的債券,期限為 10 年,分別按單利和復利計算債券的終值是多少
1、單利終值=100000*(1+12%*10)=220000元
復利終值=100000*(1+12%)^10=310584.82元
註:^為次方
2、優先股資金成本率=10%/(1-5%)*100%=10.5263%
以上回答,希望對你有所幫助。
㈧ 單利與復利如何計算
單利利息的計算:
當本金為100元時,將這筆錢在年初的時候存入銀行,年利率為10%。
如果單利的方法被使用,則每年的利息為100乘以10%(即10元),在第一年,第二年以及第三年年末時的金額為110元,120元和130元。
所以未來的某一年年末能夠收到的本金及利息的和為:FV=Principal amount *(1+n*interest rate)
復利利息的計算:
還是以上面的例子來進行解釋,第一年年末依舊能夠收到110元,但是從第二年年末開始收到的金額就與在單利計算方法下有很大的區別。
在第二年年末應該收到的利息是第一年的本息之和再乘以10%(即121元),這樣以此類推,可以得到的是在復利的方法下計算的利息比在單利的方法下同期的利息要高。
復利本息的計算公式為:
FV=Principal amount *(1+ interest rate)n
拓展資料:
單利是指一筆資金無論存期多長,只有本金計取利息,而以前各期利息在下一個利息周期內不計算利息的計息方法。
復利計算公式是計算前一期利息再生利息的問題,計入本金重復計息,即「利生利」「利滾利」。它的計算方法主要分為2種:一種是一次支付復利計算;另一種是等額多次支付復利計算。
特點:把上期末的本利和作為下一期的 本金,在計算時每一期本金的數額是不同的。主要應用於計算多次等額投資的本利終值和計算多次等額回款值。
復利計算公式_網路
㈨ 單利終值和復利終值的區別是什麼(詳細點)
復利計算和單利計息的差別
復利計算和單利計息的差別在於,單利計算方法中期限是在括弧中與年利率直接相乘;而在復利計算中,期限是作為指數,在括弧之外的。如果投資的期限相同,而且投資的年利率也一樣,那麼前者的值要大於後者的值,因此,在復利計息方式下計算出來的到期還本付息額要大於單利方式下計算出來的數值,並且期限越長,這兩個值之間的差額越大。
同樣是100元的資金,每年的利率都是2.00%,用單利法和復利法分別進行投資,期限越長,差距越大。原因是在復利法下所得到的利息收入被不斷地再投資並且不斷地得到新的收益。
那麼為什麼會有單利法和復利法之間的差別呢?單利法計算簡單,操作容易,也便於理解,因此銀行存款計息和到期一次還本付息的國債都採取單利計息的方式。但是對於投資者而言,每一期收到的利息都是會進行再投資的,不會有人把利息收入原封不動地放在錢包里,至少存入銀行也是會得到活期存款的收益的。因此復利法是更為科學的計算投資收益的方法。
特別是復利法的現值計算,這個公式決定了你當前應該付出多少資金來取得未來固定的收入,所有對債券定價的分析,都是圍繞著這個問題而展開的。
單利情況
銀行的儲蓄存款利率都是按照單利計算的。所謂單利,就是只計算本金在投資期限內的時間價值(利息),而不計算利息的利息。這是利息計算最簡單的一種方法。
單利利息的計算公式為:
I=P0×r×n
其中:I為到期時的利息,P0為本金,r為年利率,n為期限;
※例:Peter的投資回報
Peter現在有一筆資金1 000元,如果進行銀行的定期儲蓄存款,期限為3年,年利率為2.00%,那麼,根據銀行存款利息的計算規則,到期時Peter所得的本息和為:
1 000+1 000×2.00%×3=1 060(元)。
按照每年2.00%的單利利率,1 000元本金在3年內的利息為60元。那麼反過來說,如果按照單利計算,3年後的1 060元相當於現在的多少資金呢?這就是所謂的「現值」問題。
現值,是在給定的利率水平下,未來的資金折現到現在時刻的價值,是資金時間價值的逆過程。
按照單利法,從將來值計算現值的方法很簡單。我們以Vp表示現值,Vf表示將來值,則有
Vf=Vp×(1+r×n)這里r表示投資的利率,n表示期限,通常以年為單位。把這個公式反過來,就得到現值的計算公式:
※例:Peter的投資回報
Peter想在3年後收入1 060元,那麼他現在應該存多少錢進入銀行?銀行當前的3年期存款年利率為2.00%,那麼,根據單利現值的計算公式
Peter現在就要存入1 000元才能保證3年後有1 060元的收入。
復利情況
所謂復利,是指在每經過一個計息期後,都要將所生利息加入本金,以計算下期的利息。這樣,在每一計息期,上一個計息期的利息都要成為生息的本金,即以利生利,也就是俗稱的「利滾利」。
※例:Peter的投資回報
Peter的一筆資金的數額為1 000元,銀行的1年期定期儲蓄存款的利率為2.00%。Peter每年初都將上一年的本金和利息提出,然後再一起作為本金存入1年期的定期存款,一共進行3年。那麼他在第3年末總共可以得到多少本金和利息呢?這項投資的利息計算方法就是復利。
在第一年末,共有本息和為:
1 000+1 000×2.00%=1 020(元)
隨後,在第一年末收到的本息和作為第二年初的投資本金,即利息已被融入到本金中。因此,在第二年末,共有本息和為:
1 020+1 020×2.00%=1 040.40(元)
依此類推,在第三年末,共有本息和為:
1 040.40+1 040.40×2.00%=1 061.21(元)
復利計息方式下到期的本息和的計算原理就是這樣。這種方法的計算過程表面上太復雜了,但事實並非如此。上述的Peter資金本息和的計算過程實際上可以表示為:
1 000×(1+2.00%)×(1+2.00%)×(1+2.00%)=1 000×(1+2.00%)3=1 061.21(元)
和單利法一樣,我們以Vp表示現值,Vf表示將來值,則有
Vf=Vp×(1+r)^n
這里r表示投資的利率,n表示期限,通常以年為單位。
把這個公式反過來,就得到現值的計算公式:
※例:Peter的投資回報
Peter想在三年後收入1 061.21元,如果按照復利的投資方法,他現在應該存多少錢進入銀行?銀行當前的1年期存款利率為2.00%,那麼,根據復利現值的計算公式:
Peter現在就要存入1 000元才能保證3年後有1 061.21元的收入。當然,Peter必須每年都把本金和利息收入合並起來進行新的投資,才會得到1 061.21元這個結果。
請你務必仔細地理解這個例子,這個例子是以後所有債券定價分析的基礎。復利法的現值公式決定了你當前應該付出多少資金來取得未來的預期收入,而債券的定價分析,就是圍繞著這個問題展開的
㈩ 現值的計算公式(單利和復利)
單利 利息=本金*利率*年份
本息和=本金*(1+利率*年份)
復利 本息和=本金*(1+利率)V年份
例子有很多,可以自己找。