無息票債券,又稱零息債券,
發行價格=面值÷(1+市場利率)^年限
例如,面值100元的三年期零息債券,在市場利率為8%的條件下,
發行價格=100÷(1+8%)^3
㈡ 零息債券的定價
零息票債券屬於折讓證券,在整個借款的年期內不支付任何利息(息票),並按到期日贖回的面值的折讓價買入。買入價與到期日贖回的面值之間的價差便是資本增值,因此:
買入價 = 面值 - 資本增值
㈢ 零息債券到期收益率怎麼計算
零息債券是指以貼現方式發行,不附息票,而於到期日時按面值一次性支付本利的債券。其具體特點在於:該類債券以低於面值的貼現方式發行,由其發行貼現率決定債券的利息率。
該類債券的兌付期限固定,到期後將按債券面值還款,形式上無利息支付問題;該類債券的收益力具有先定性,對於投資者具有一定的吸引力;該類債券在稅收上也具有一定優勢,按照許多國家的法律規定,此類債券可以避免利息所得稅。
具體的債券收益率計算公式如下所示:
1、對處於最後付息周期的附息債券(包括固定利率債券和浮動利率債券)、貼現債券和剩餘流通期限在一年以內(含一年)的到期一次還本付息債券,到期收益率採取單利計算。計算公式為:
2、其中:y為到期收益率;PV為債券全價(包括成交凈價和應計利息,下同);D為債券交割日至債券兌付日的實際天數;FV為到期本息和。
(3)零息債券發行價格計算方法擴展閱讀:
計算公式:
到期收益率=(收回金額-購買價格+總利息)/(購買價格×到期時間)×100%
與持有期收益率一樣,到期收益率也同時考慮到了利息收入和資本損益,而且,由於收回金額就是票面金額,是確定不變的,因此,在事前進行決策時就能准確地確定,從而能夠作為決策的參考。但到期收益率適用於持有到期的債券。
示例:某種債券面值100元,10年還本,年息8元,名義收益率為8%,如該債券某日的市價為95元,則當期收益率為8/95,若某人在第一年年初以95元市價買進面值100元的10年期債券,持有到期,則9年間除每年獲得利息8元外,還獲得本金盈利5元,到期收益率為(8×9+5)/(95×10)。
㈣ 附息債券定價公式
債券每年支付的利息金額=pr
債券價格=pr/(1+R)+pr/(1+R)^2+pr/(1+R)^3+pr/(1+R)^4+......+pr/(1+R)^n+p/(1+R)^n
㈤ 零息票債券等價到期收益率怎麼計算
零息債券是指以貼現方式發行,不附息票,而於到期日時按面值一次性支付本利的債券。其具體特點在於:該類債券以低於面值的貼現方式發行,由其發行貼現率決定債券的利息率;該類債券的兌付期限固定,到期後將按債券面值還款,形式上無利息支付問題;該類債券的收益力具有先定性,對於投資者具有一定的吸引力;該類債券在稅收上也具有一定優勢,按照許多國家的法律規定,此類債券可以避免利息所得稅。
具體的債券收益率計算公式如下所示:
1、對處於最後付息周期的附息債券(包括固定利率債券和浮動利率債券)、貼現債券和剩餘流通期限在一年以內(含一年)的到期一次還本付息債券,到期收益率採取單利計算。計算公式為:
其中:y為到期收益率;PV為債券全價(包括成交凈價和應計利息,下同);D為債券交割日至債券兌付日的實際天數;FV為到期本息和。其中:貼現債券FV=100,到期一次還本付息債券FV=M+N×C,附息債券FV=M+C/f;M為債券面值;N為債券償還期限(年);C為債券票面年利息;f為債券每年的利息支付頻率。
上述公式同樣適用於計算債券回購交易中的回購利率,不過其中FV為到期結算本息和,PV為首期結算金額,D為回購天數。
2、剩餘流通期限在一年以上的零息債券的到期收益率採取復利計算。計算公式為:
其中:y為到期收益率;PV為債券全價;M為債券面值;L為債券的剩餘流通期限(年),等於債券交割日至到期兌付日的實際天數除以365。
3、剩餘流通期限在一年以上的到期一次還本付息債券的到期收益率採取復利計算。計算公式為:
其中:y為到期收益率;PV為債券全價;C為債券票面年利息;N為債券償還期限(年);M為債券面值;L為債券的剩餘流通期限(年),等於債券交割日至到期兌付日的實際天數除以365。
4、不處於最後付息周期的固定利率附息債券和浮動利率債券的到期收益率採取復利計算。
其中:y為到期收益率;PV為債券全價;f為債券每年的利息支付頻率;W=D/(365÷f),D為從債券交割日距下一次付息日的實際天數;M為債券面值;n為剩餘的付息次數;C為當期債券票面年利息,在計算浮動利率債券時,每期需要根據參數C的變化對公式進行調整。
零息票債券屬於折讓證券,在整個借款的年期內不支付任何利息(息票),並按到期日贖回的面值的折讓價買入。買入價與到期日贖回的面值之間的價差便是資本增值,因此:買入價=面值-資本增值零息債券到期收益率=(面值-買入價)/買入價*100%
㈥ 零息債券公式
零息票債券屬於折讓證券,在整個借款的年期內不支付任何利息(息票),並按到期日贖回的面值的折讓價買入。買入價與到期日贖回的面值之間的價差便是資本增值,因此:買入價 = 面值 - 資本增值。
零息債券有以下特色:
1、折價發行:用低於票面價值買到債券
2、發行的天數越長,折價越多,你可以用越低的價格買到
3、無再投資風險
當領到利息後,將賺到的再重新投資時,因為市場利率隨時都在變動,收益也會有風險。但零息債券沒有利息,所以沒有此類風險。
4、隨到期日越近,債券價格越接近票面價值,風險越小
隨著到期日越來越近,債券的市場價格會越來越接近票面價值,也就是價格會越來越高,往他原有的價值邁進。所以離到期日越近,風險就越小(例如:通貨膨脹影響、違約風險、匯率風險)。
(6)零息債券發行價格計算方法擴展閱讀
1、優點
公司每年無須支付利息或只需支付很少的利息;按稅法規定,零息債券或低息債券發行時的折扣額可以在公司應稅收入中進行攤銷。
2、缺點
債券到期時要支出一筆遠大於債券發行時的現金;這類債券通常是不能提前贖回。因此,假如市場利率下降,公司不能要求債券投資者將債券賣回給公司。
㈦ 零息利率怎麼算
零息利率則為貼現發行的金融商品的利率。利率=(面值-發行價格)/(發行價格*期限)。
息利率(zero-coupon interest rate或zero rate,又稱即期利率——spot rate),指從當前時點開始至未來某一時點止的利率,有時也稱零息債券收益率(Zero-coupon yield)。
如果一筆投資在到期前不會有現金流收入,到期後才有現金流,那麼該筆投資的到期收益率即零息利率(即期利率)。因為零息發行的債券符合這一定義,因此又將這種利率稱為零息利率。
㈧ 零息債券和貼現債券的區別核算上是怎麼算
貼現債券是很早就有的債券形式(在票面上不規定利率,發行時按規定的折扣率,以低於債券面值的價格發行,到期按面值支付本息的債券),只用於期限比較短的債券,比如短期國債.
零息債券是80年代才在美國出現的債券形式.期限較長.經常是由經紀公司將普通債券的息票和本金剝離後產生的.
核算:買入時已買入價入帳,每期以計算的利息記利息收入.