1. 以一個必要收益率計算某一債券的現值,債券半年付息一次。在折算本金現值時是否也按半年周轉折現。為什麼
就像2L說的,把每個周期的利息按照所在周期的利率進行貼現就行了,最後加上面值的貼現,本質上還是付息債權價值評估公式,只是對應的年限和利率變成一般也好,三分之一四分之一也好,就是把公式看活一點,半年一年又有什麼區別呢
2. 企業會計學計算題
解答:首先因為是票面利率6% < 市場利率7%,如果平價發行老百姓會覺得虧錢,所以是債券時折價發行。
08年債券票面利息=發行面值*票面利率=1000000*6%=60000元(這個每年一樣)
08年債券實際利息=08年1月1日發行價*債券市場利率 = 966132*7%=67629元
08年債券利息調整=08年實際利息-08年票面利息 = 67629.24-60000=7629元
08年債券攤余成本=發行價+08年債券利息調整 = 966132+7629=973761元
09年債券票面利息=發行面值*票面利率=1000000*6%=60000元
09年債券實際利息=08年債券攤余成本*市場利率 = 973761*7%=68163元
09年債券利息調整=09年實際利息-09年票面利息 = 68163-60000=8163元
09年債券攤余成本=09年債券攤余成本+09年債券利息調整= 973761+8163=981924元
後年2年再把利息調整加到一起,攤余成本回歸到債券面值1000000,共獲得利息60000*4=240000
3. 3天國債回購能賺多少
交易品種:目前上交所、深交所都有國債回購業務但上交所的交易要活躍得多,我的所有交易都在上交所完成,目前共有1、2、3、4、7、14、28、91、182天9個品種。
品種
代碼
1天
204001
2天
204002
3天
204003
4天
204004
7天
204007
14天
204014
28天
204028
91天
204091
182天
204182
交易方法:
1)在證券委託中選擇賣出
2)然後在填入品種代碼,
3)填入你願意出借資金的收益率,交易軟體上顯然的數據就是當時的收益率,比如數據是3.22就表示當時的收益率是3.22%;
4)然後還需要輸入回購數量,(回購交易以100元為1手,最低交易數量和遞增數量均為1000手即10萬元、你有10萬現金輸入數量就是1000、20萬現金輸入數量就是2000、50萬現金輸入數量就是5000,依次類推)
5)填完這些即可發送委託,並可在成交中查詢是否成交。
其他
1、回購交易的最小單位是「10萬」:你有15萬的資金只能做10萬的回購、有27萬的資金只能做20萬的回購,以此類推。
2、交易費用:「10萬」單位1天回購費用1元、7天回購費用5元、14天回購費用10元、28天回購費用20元(就1天回購而言年化的費用率是0.36%)。
3、資金回歸:回購交易只做賣出委託融出資金、而融出資金的本息是交易所按時自動回歸賬戶不需再做操作非常方便,這里以最活躍的1天與7天回購為例進行說明:
(1)1天回購(204001)每天的交易量達到數百億非常活躍,在完成交易當天晚上資金本息就回歸賬戶但是處於凍結狀態而且第二天仍處於凍結狀態,所謂的凍結狀態就是不能取現、但可以做其他交易比如繼續做回購或申購新股或買入股票等等(不可取但可用)。例如明天有新股准備申購,今天賬戶有50萬那麼今天就可以做50萬一天的回購並不影響明天的新股申購,可以有效的提高資金使用效率;
(2)7天回購(204007)也是非常活躍的品種,比如星期二做7天回購、那麼下個星期一晚上資金本息就會自動回歸賬戶但處於凍結狀態而且周二會繼續凍結(不可取但可用)、星期三資金解凍(可取可用)。
4、收益率:國債回購的收益率是通過交易所競價產生的,這點與股票一樣,是不斷波動、隨行就市的。考慮到1天回購的費用率是0.36%(期限越長費用率越低)、目前活期利率是0.5%、所以只要回購收益率到達0.86%以上做回購交易就比持有現金強。收益率波動非常大,特別是月末季末,有時可以做到10%以上,而且周四涉及周末因素204001的收益率一般較高,有的時候做回購交易還要與新股申購及節慶長期等因素結合進行綜合考慮,我的策略一般是短中期結合滾動操作,這里記錄本月我做的部分交易以做案例:
(1)2011-7-01:「204001」10萬,利率4.78%、手續費1元,扣除手續費收益12.28元
(2)2011-7-04:「204004」10萬,利率5.36%、手續費4元,扣除手續費收益55.56元
(3)2011-7-08:「204014」10萬,利率4.60%、手續費10元,扣除手續費收益168.89元
(4)2011-7-21:「204001」20萬,利率8.08%、手續費2元,扣除手續費收益42.89元
我自己做過很多次回購交易,基本能夠保證賬戶上沒有閑散現金,就是感覺操作比較頻繁有些麻煩但現在無處不網,通過網上交易進行操作還是比較方便。我現在已經將回購交易做為現金管理最重要的工具之一。
4. 如何用回歸直線法求資產的系統風險系數β
資本資產定價模型的主要內容是分析風險收益率的決定因素和度量方法,其核心關系式為:
R=Rf+β×(Rm一Rf)
式中,R表示某資產的必要收益率;β表示該資產的系統風險系數;Rf表示無風險收益率,通常以短期國債的利率來近似的替代;Rm表示市場平均收益率,通常用股票價格指數的平均收益率來代替。
公式中的(Rm一Rf)稱為市場風險溢酬,它是附加在無風險收益率之上的,由於承擔了市場平均風險所要求獲得的補償,它反映的是市場作為整體對風險的平均「容忍」程度。對風險的平均容忍程度越低,越厭惡風險,要求的收益率就越高,市場風險溢酬就越大;反之,市場風險溢酬則越小。
某項資產的風險收益率是該資產的β系數與市場風險溢酬的乘積。即:
風險收益率=β×(Rm一Rf)
5. 怎麼用VaR向量自回歸模型分析國債收益率與利率的關系啊
兩個向量的是最簡單的了,直接在EVIEWS中回歸就是了,選中這兩上變數,右鍵裡面有吧。
也是一樣,選中三個變數,右鍵創建VAR模型
6. 計算一個公司的WACC,需要用到債務資本成本、權益資本成本等數據。如何通過年度報告數據計算
債務資本的單位成本和股本資本的單位成本根據債務和股本在資本結構中各自所佔的權重計算的平均單位成本。加權平均資本成本率=債務資本利息率×(1-稅率)(債務資本/總資本)+股本資本成本率×(股本資本/總資本)
股本資本成本率=無風險收益率+BETA系數×(市場風險溢價)
無風險收益率計算可以以上海證券交易所交易的當年最長期的國債年收益率為准;BETA系數計算,可通過公司股票收益率對同期股票市場指數(上證綜指)的收益率回歸計算得來;市場風險溢價=中國股市年平均收益-國債年平均收益
(1)計算公式
稅前債務成本=政府債券的市場回報率+企業的信用風險補償率
(2)本公司政府債券的市場回報率=本公司同期的長期政府債券到期收益率
(3)本公司信用風險補償率的確定
①選擇若干信用級別與本公司相同的上市的公司債券;
②計算這些上市公司債券的到期收益率;
③這些上市公司債券無風險利率=同期的長期政府債券到期收益率;
④這些上市公司信用風險補償率=這些上市公司債券的到期收益率-同期的長期政府債券到期收益率;
⑤本公司的信用風險補償率=這些上市公司債券的信用風險補償率的平均值(算數平均數)。
7. 債券的期限結構的計算方法
看看如下網上摘錄就會有所了解:在國債市場上,利率期限結構是一個重要的概念。研究我國國債利率期限結構,對於我國有著重要的理論和現實意義。目前,我國正在進行利率的市場化改革,其中基準利率的確定是關鍵的一步。隨著我國國債市場的發展,合理的國債利率期限結構,能為基準利率的確定提供參考。同時,我國正准備大力發展金融衍生產品,金融衍生產品交易所也即將在上海成立。只有準確估計利率期限結構,為衍生產品提供定價基礎,獲得合理的衍生品價格,才能促進金融衍生品市場的健康發展。
國債市場利率期限結構概述
傳統利率期限結構研究有三大理論:預期理論,市場分割理論以及流動性偏好理論。它們的問題是只解釋了長短期利率差異的原因,不能准確地說明利率的動態變化。現代的利率期限結構理論把利率的運動假設為隨機變動過程,以短期利率或短期利率的波動率為變數建立隨機模型來模擬描述現實世界的利率變化。在現代利率期限模型中,通常有兩部分所構成:一是所謂的漂移項(draft term),二是所謂的波動項部分(variance term)。通常在大部分的利率結構模型中,認為利率變動的漂移項部分有所謂的均值回歸(mean reversion)現象,即短期利率受長期平均利率的吸引:當短期利率上漲時,會有力量自然使其下降,向長期平均利率靠攏;當短期利率下降時,會有力量使其上升,從而不偏離長期利率水平。而在波動項的設定上.較早的模型通常假定利率的波動性是固定的,但由於與實際不符,便開始有模型將利率的波動性假定為利率水平的函數,也就是所謂的利率水平項效應(level effect)。現代隨機利率期限結構模型主要有均衡模型和無套利模型。
由於國內的利率市場尚未放開以及債券市場規模不大,利率期限結構方面的研究相對國外來說相對落後,並且多為實證分析。陳雯、陳浪南(2000)首次利用連續復利的到期收益率對中國債券市場的利率期限結構進行了靜態估計,但是他們的檢驗沒有將息票債券的到期收益率和無息票債券的到期收益率區別開來。朱世武,陳建恆(2003)用三次多項式樣條函數方法對交易所國債利率期限結構進行了實證研究。鄭振龍,林海(2003)分別採用息票剝離法,以及多項式樣條函數法靜態估計了中國市場利率期限結構。范龍振(2003)採用兩因子Vasicek模型估計了上交所債券利率期限結構。周榮喜,邱菀華(2004),基於多項式樣條函數對利率期限結構模型進行了實證比較。謝赤,吳雄偉(2002)基於Vasicek模型和CIR模型實證分析了中國貨幣市場利率行為。任兆璋.彭化非(2005)用時間序列模型對我國的同業拆借市場進行了利率期限結構的實證分析。王曉芳.劉鳳根.韓龍.(2005)以上交所債券價格隱含的利率期限結構數據作為分析對象,利用三次樣條函數構造出了中國的利率期限結構曲線,並對其作了相關的評價。從上面可以看出,國內實證研究多以國債市場為對象。研究方法以多項式樣條函數法居多,並且樣條函數取三次函數,節點的選取多為3個。這是因為多項式樣條函數方法要比理論模型像Vasicek模型更有實用價值,估計的結果更好。
實證模型推導和數據說明
(一)基本概念
1.國債品種結構。目前國債按付息方式可以分為:零息國債和附息國債零息國債在存續期內不支付利息,到期一次還本付息。我國在1996年以前發行的國債均屬此類。附息國債的利息一般按年支付,到期還本並支付最後一期利息。
2.債券的價格計算。債券的價格可通過如下的公式來計算。
其中Fi表示第i次支付的現金數目(利息或本金),ti′表示第次付現的時間,m表示付現的次數。P(t,T)表示t時刻到期日為T的債券的貼現價格。Fi,P(T,t),m,T對於每一種債券來說都是已知的確定的,因為我們假設國債是無風險的。只有隱含在債券價格中的貼現函數D(ti)是待估計的。D(ti)=e-r(ti)ti,其中的r(ti)即為以復利形式表示的利率期限結構的表達式。
3.國債各種收益率概念。(1)名義收益率。名義收益率=年利息收入÷債券面值×100%。通過這個公式我們可以知道,只有在債券發行價格和債券面值保持相同時,它的名義收益率才會等於實際收益率。例:某債券面值為100元,年利率為6%,那麼債券的名義收益率就是票面利率6%。(2)即期收益率。即期收益率也稱現行收益率,它是指投資者當時所獲得的收益與投資支出的比率。即:即期收益率=年利息收入÷投資支出×100%。例:某債券面值為100元,票面年利率為6%,發行時以95元出售,那麼在購買的那一年投資人即期收益率為100×6%÷95×100%=6.32%。(3)持有期收益率。由於債券可以在發行以後買進,也可以不等到償還到期就賣出,所以就產生了計算這個債券持有期的收益率問題。持有期收益率=[年利息+(賣出價格-買入價格)÷持有年數]÷買入價格×100%。例:某債券面值為100元,年利率為6%,期限5年,每年付息一次。我以95元買進,我預計2年後會漲到98元,並在那時賣出,要求我的持有期收益率。則我的持有期收益率為[100×6%+(98-95)÷2]÷95×100%=7.89%。(4)到期收益串。到期收益率是指投資者在二級市場上買入已經發行的債券並持有到期滿為止的這個期限內的年平均收益率。到期收益率的計算根據當時市場價格、面值、息票利率以及距離到期日時間,也假設所有息票以同樣的利率進行再投資。到期收益率是度量不同現金流、不同期限債券的回報串的一個公認指標。
(二)多項式樣條法
多項式樣條法是由McCulloch[9,10,11)提出的,它的主要思想是將貼現函數用分段的多項式函數來表示。
從上面提到的債券的價格公式,我們知道,要求利率期限結構函數r(ti),首先要估計出D(ti)。
K階多項式樣條函數法假設貼現函數D(ti)具有如下的形式:
其中節點t1t2……的位置和數目的確定,理論上並沒有統一的方法。
然後根據節點處要保證k-1階連續的原則,找出各參數之間的關系,減少參數的個數。滿足如下的方程
根據樣本估計出D(ti)中所包含的參數,從而求解出債券中隱含的利率期限結構r(ti)。
本文中,我們選定多項式樣條函數的階數為3。因為如果階數過小,如當多項式樣條函數為二階時,D(t)的導數D(2)(t)是離散的;而當階數過高時,驗證D(t)的三階或四階函數是否連續的難度很大。
三階多項式樣條函數的形式如下:
同時,為了保證分段函數的平滑和連續,貼現函數還需滿足以下約束條件:
在函數分界點的選取上,我們參照國內國債期限結構實證檢驗上的一般做法,選取5年和8年作為函數的分界點。這樣,再加上約束條件,我們就能確定最終函數的具體形式。
可以看出,多項式樣條函數的方法事先假設了貼現函數的.形式,是一種典型的參數估計的方法。為了估計參數,我們使用線性最小二乘法進行估計。
(三)最小二乘法
最小二乘法是估計隨機變數參數最基本的方法,也是在計量經濟分析中運用最早最廣泛的參數估計方法。
最小二乘法的基本原理是根據隨機變數理論值與觀測值的偏差平方和最小來估計參數。
設y是K個隨機變數X1,,…XK的函數,含有m個a1,…,am參數,即
如果,是參數a1,…,am的估計,那麼就是y的估計值。如果有n個y和X1,…,XK的樣本(X1i, ,…Xki,ut),i=1,…,n,那麼代入上面的估計方程y=f(a1,…,…am;X1,…,…XK)就可以得到n個。n個和y的偏差情況就反映了參數估計量的好壞。如果一組參數使得估計值和觀測值的誤差平方和最小,那麼這樣的參數就稱為最小二乘估計參數。
實證研究
(一)數據選取
本文採用上海證券交易所交易所2006年4月28日和5月8日的國債收盤數據做為樣本。所有44隻國債均為固定利率的,其中有5隻為半年支付一次利息,一隻為每月付息一次,三隻貼現債券,其餘均為每年付息一次。
選取的是兩天的數據,這樣就可得到兩條利率期限結構曲線。我們就可以分析五一長假前後,國債市場的期限結構是否發生了改變,發生了怎樣的改變。
(二)實驗結果以及結果分析
用matlab軟體編寫程序,並將數據輸入,運行程序最終的得到的參數估計值如下:
2006年4月28日
d1=0.000626 c1=-0.008315 b1=-0.004094 d2=-0.000024 d3=0.000003,
2006年5月8日
d1=0.000624 c1=-0.008065 b1=-0.005127 d2=-0.000024 d3=0.000003,
得到如下的利率期限結構如圖1所示。可以看出,擬合的結果很好,兩條曲線很光滑。國債市場的利率期限結構是一條上凸的曲線,長期利率高於短期利率。並且從4月28日和5月8日兩條利率期限結構曲線可以看出,短期利率上升,而長期利率變化不大,三月期利率上升了近40個基點。
由理性預期假說可知,從長期來看,短期利率有上升的預期。可以這樣來解釋,投資者預期我國整體宏觀經濟會繼續保持良好的運行態勢,對經濟前景充滿信心,投資需求進一步上升,從而對於資金的需求會增加,導致長期利率高於短期利率。
另一方面,今年一季度經濟增長過快,一季度GDP增速為10.2%,已經超過全年控制在8%的發展預期。央行有可能採取較為緊縮的貨幣政策來調控經濟,這也在一定程度上導致了短期利率的上升。中國人民銀行宣布,從4月28日起上調金融機構貸款基準利率,金融機構一年期貸款基準利率上調0.27個百分點,由現行的5.58%提高到5.85%。雖然國債市場和信貸市場屬於兩個不同的市場,但是通過影響投資者的資金狀況,這一貨幣政策信號很快地傳遞到了國債市場,導致了短期利率的上調。
整體來講,國債市場的利率水平低於人民幣貸款利率而稍高於存款利率。以一年期利率為例,國債利率介於1.9和2.0之間,而扣除利息稅之後的定期存款利率為2.25*0.8=1.8,相應的貸款利率為5.85。
由於國債是以國家的信用作擔保的,在我國當前情況下無違約風險,故國債利率可視為無風險利率。而人民幣貸款是有一定違約風險的,故其利率有風險補償因子,貸款利率高於國債利率是應該的。人民幣存款利率同樣也是無風險的利率,同時考慮到國債市場的流動性要高於定期存款,理論上來講國債利率應該和存款利率相差不大,甚至略低於存款利率。因此,如果存款利率放開,其利率水平有上升空間。
(三)利率互換模擬定價:
今年年初的利率市場化改革有很多新舉措。最耀眼的當屬人民幣利率互換的推出。今年1月24日,人民銀行發布(關於開展人民幣利率互換交易試點有關事宜的通知)。2月9日,人民銀行正式推出人民幣利率互換試點。2月9日,國家開發銀行與中國光大銀行完成了首筆人民幣利率互換交易。名義本金為人民幣50億元,期限10年,光大銀行支付固定利率、開發銀行支付浮動利率。3月8日,全國銀行間同業拆借中心發布公告稱,自3月8日起正式對外發布銀行間回購定盤利率。從某種意義上可以說,宣告了中國的「LIBOR」的誕生,並為利率相關衍生產品的定價提供了基礎。
我們假設有這樣一份互換合約。A銀行和B銀行都有本金為50億的借款,期限均為一年。A銀行的借款為固定利率的,利息為2.25%。B銀行的借款為浮動利率的,到期時要支付當天一年期零息票國債的收益率 (即為到期日國債市場一年期利率)。A銀行和B銀行於2006年5月8日簽訂互換合約,A銀行到期支付浮動利率,B銀行到期支付固定利率,則可算出這份互換合約的價值:
2007年5月8日國債市場一年期利率的R07,1,1期望值為
由圖1可得,1+R06,1=1.01985,1+R06,2=1.0221,帶入可得
1+ER07,1=1.0244
故該互換的價值為
其中L*(ER07,1-0.0225)為B銀行期望的現金流,而1+R06,1為貼現因子。故B應該應向A銀行支付0.093億元來購買該互換合約。這是因為該和約對B銀行來講,預期是正的現金流。而A銀行則面臨負的現金流,故B銀行應補貼A銀行。
幾點結論
本文綜述了國內外利率期限結構研究的進展。通過三次樣條函數建立模型進行實證分析,我們可以得到如下的結論:
1.三次樣條函數可以較好的擬合我國國債市場的利率期限結構
2.當前國債市場的利率期限結構是一條上凸的曲線,形狀能夠較好的反映了宏觀經濟對資金的需求情況。
3.我國短期利率有上升的趨勢,長期利率表現較為穩定,反映了投資者對經濟長期運行態勢的信心。
4.與市場化程度很高的國債市場利率相比,存款利率較低。如果放開存款利率,有上升的空間。
8. 用IS-LM模型分析財政部發行國債對產出和利率的影響
中文摘要 利率問題是金融市場最基礎,最核心的問題之一,幾乎所有的金融現象都與之有著聯系。我國國債市場在金融市場上佔有著重要地位,國債利率是影響國債交易的最主要因素。國債收益率及其收益率曲線的形狀和變動對債券市場乃至整個金融市場都具有重要意義。本文就是從國債市場入手,從利率期限結構的角度出發,對國債市場上的利率期限結構進行研究。在假定風險,稅收等因素都相同的情況下,探求國債利率與到期期限之間的關系,以期能夠對國債投資者與債券發行者提供有益的建議。 在一些發達市場經濟國家,有關利率期限結構的研究已經進入隨機過程時代。因為這些國家國債市場利率早已經市場化,而且國債市場非常發達,在同一時間往往有好幾百個國債品種同時上市交易,利用相關的統計技術,很容易就可以得出我們想要的利率曲線。目前其研究興趣主要集中在利率的行為模式和利率衍生產品的定價方面。 由於我國目前利率還沒有市場化,利率衍生產品非常少,還無法進行類似的研究。從應用的角度出發,目前最主要的還是對利率收益曲線的研究。事實上,國內也有不少人做過這一方面的研究,但是研究得不夠深入。有隻研究了銀行存款利率;有研究國債收益率的,但都集中在到期收益率上,很少有人想到使用即期收益率。一個主要的原因就是我國國債品種較少,幾乎沒有辦法直接估計出相應的國債即期利率,從而使得許多研究者和從業人員只得退而求其次,使用到期收益率。但是,到期收益率假定投資者對同一國債品種在不同期限的現金流要求同樣的收益率,這顯然是不合理的。 傳統的利率期限結構理論以研究中長期利率走勢為主,收益率曲線是其主要工具。目前,國內對利率期限結構模型的研究還停留在簡單介紹和定性分析的層次。特別是對於國際上先進的理論和實證方法在中國的應用與改進的研究,國內幾乎完全處於空白。 本文試圖通過分析國內外理論界對利率期限結構研究方法的差異,探索使用自己的方法對我國國債利率期限結構進行實證分析,以使先進的理論方法與中國的實際相接軌,探索適合我國國債收益率的建模方法。 在論文的結構安排上,本文分為引言和八個章節: 引言部分對利率在金融市場的重要性以及本人研究的范圍和角度作了一個簡單的說明。 第一章對我國國債市場的現狀進行了分析。主要集中在幾個部分,國債本身的界定,國債所具有的特徵,分類。我國國債市場的發展過程,以及國債市場利率期限結構要考慮的因素,國債市場存在的問題。本章主要內容集中在國債本身的界定以及國債市場利率期限結構要考慮的因素。在我國,對國債含義的解釋比較混亂,存在的主要問題是理論解釋與現實生活中的涵義不相一致。對「國家公債,亦簡稱國債。國家以信用方式,按照一定程序從個人、團體和國外籌措資金的一種方式,可分為中央財政發行的國家公債和地方政府發行的地方公債」這種認識進行了糾正。指出我國的國債是:中華人民共和國財政部代表中央政府發行,債務資金由中央財政掌握使用的國家公債,包括內債與外債,是公債的一種。同時對於國債市場利率期限結構中要考慮的因素進行了總結、歸納,對以後國債的發行需要考慮的因素,提出自己的建議。 第二章對利率期限結構的定義與研究的動機進行了探討。指出利率期限結構(Term Structure of Interest Rates)是指在相同的風險水平下,不同期限的即期收益率之間的數量關系。一般來說,在風險、流動性、稅收特徵等方面相同的債券,由於期限不同,利率也會有所不同,利率期限結構常常用坐標圖形的形式來表達,在二維平面圖上債券的到期期限與其收益率形成一一對應的關系,因此描述利率期限結構的重要工具是不同形狀的收益率曲線。收益率曲線的基本形狀大致有以下五種,即向上傾斜的、向下傾斜的、平坦直線形的以及兩種駝峰形的。隨後探討了利率期限結構的動機,以及對與利率期限結構研究的必要性。 第三章對傳統的四種利率期限結構理論進行了介紹,並指出其缺點。這四種理論分別是,純粹預期理論(Unbiased Expectation Theory),流動性偏好理論(Liquidity Preference Theory),市場分割理論(Market Segmentation Theory)和優先置產理論(Preferred Habit Theory)流動性偏好理論是對純粹預期理論的修正,長期利率是在短期預期利率的平均值的基礎上加上了一個流動性補償。而市場分割理論完全是另外一個方向,認為長期利率與短期利率是分割的,是兩個不同市場參與者分別決定的。優先置產理論是上面三個理論的總和。既考慮了短期利率的預期,也考慮了不同期限市場參與者對利率的偏好影響。 第四章對國外最近對利率期限結構的研究成果進行了介紹,他們分別是均衡模型理論與無套利機會模型理論,並且選擇了其中比較有代表性的模型,進行了介紹,並指出了其優缺點,為下文進行的實證研究提供了理論基礎。 第五章對構建收益率曲線所需要的要素進行了分析並探討計算的方法。這些要素分別是:即期收益率、到期收益率、遠期收益率。指出了收益率曲線的幾種形狀。一般有5種常見的形狀。(1)上升型(upward-sloping)曲線向上傾斜,即隨著期限的增大,利率逐漸上升。(2)下降型(inverted)曲線向下傾斜,即隨著期限的增大利率反而下降。(3)平直型(flat)即利率不隨期限的變化而變化。(4)駝峰型(hump-shaped)即利率在期限較長和期限較短的情況下比較小,而當期限為中期時收益率較大。(5)倒駝峰型((inverted hump-shaped)即利率在期限較長和期限較短的情況下比較大,而當期限為中期時收益率較小。 第六章是本文的實證分析章節。本文通過選取2007年3月9日上海證券交易所未到期的國債共53隻進行建立模型進行分析。在假設不同期限的國債的收益率只與剩餘期限有關的條件下,對53隻國債分別求出即期收益率。選用二次多項式函數來擬合貼現函數,進行分歸分析。在工具選擇上,本文選用微軟的Excel軟體展開運算獲得精確計算結果。同時使用MathType進行正文公式的輸入。通過實證分析,發現我國國債收益率曲線,呈倒駝峰形分布。收益率曲線扁平化比較明顯,在3年期的國債收益率出現明顯的拐點。 第七章通過對收益率曲線的實證研究,最後一章對完善利率期限結構,對國債市場的基準利率的建設提出了政策建議。1.完善期限品種,特別是增加短期國債的數量。2.合並銀行間國債市場與證券交易所國債市場,建立統一的國債市場。3.加快利率市場化改革進程,建立以國債利率為基準利率的體系。4.增大國債發行規模,其中可流通的國債要佔相當大的比重。5.促使利率期限結構趨於合理。6.財政政策要與貨幣政策協調配合。7.完善國債市場的利率期限結構,有利於收益率曲線的精確性。8.市場運作要求具有規范性、信息透明性。國債發行應盡量採用公開拍賣制度,根據承銷對象的不同選擇適當的拍賣方式(公開升序拍賣、第二價格拍賣、公開降序拍賣、第一價格拍賣)。 本文在研究中的幾個特色: 1、實證分析過程中數據的選取。本論文選取了2007年3月9號在上海證券交易所交易的所有53隻國債,選擇的數據較多,實證分析的結果更加精確。 2、在進行回歸分析時,不是簡單的選擇即期收益率,而是處於連續性考慮,選擇了二次多項式函數來擬合貼現函數。這樣通過回歸方程計算出來的即期收益率更加具有連續性,符合實際情況。 3、實證分析的結果表明,收益率曲線呈現上升趨勢,長期國債收益率高於短期國債,這與純預期理論相符合。這一結構表明,現行經濟環境造成短期利率已經處於低位,存在升息壓力,利率的期限結構應呈上升趨勢,也就是存在通貨膨脹升水。而根據流動性偏好理論,長期國債的流動性不如中短期國債,必然要獲得流動性溢價,因此長期國債收益率高。 收益率曲線扁平化趨勢明顯。3年起以下的品種明顯下移,3年期以上的國債品種利息差在不斷的縮小。總體上看2006年,國債收益率曲線呈現總體扁平化趨勢。具體來看,收益率曲線變化可大致分為三個階段:第一階段是一季度的扁平化階段,這一階段短期債券價格逐步回落,短期債券收益率有所上升,而長期債券價格不斷走高,長期債券收益率逐步下降,收益率曲線呈現扁平化趨勢;第二階段是二季度到三季度中期,由於債券市場整體價格走低,各期限債券到期收益率均有所上升,收益率曲線整體平穩上移;第三階段是自三季度後期開始至年末小幅下移並進一步平坦化階段,債券市場價格整體回升,收益率曲線小幅下移,其中長期債券價格上升趨勢相對明顯,並逐步超過年初長期債券價格水平,收益率曲線進一步平坦化。 本文在以後研究中有待於深一步探討的方面有: 首先本文採取的是回歸分析方法對國債的即期收益率進行擬合,現在國外比較流行的方法都是採用的是隨機過程模型進行擬合,本論文下一步有必要進行深化。其次本文雖然選取的數據較多,但是只是限於上海證券交易所上市交易的國債,對於銀行間市場交易的國債沒有考慮,回購市場國債沒有考慮,但是由於體制的原因,這幾個市場間彼此是分離的,等三個市場合並之後,有必要統一進行研究。