導航:首頁 > 金融管理 > 大數據金融在保險的運用

大數據金融在保險的運用

發布時間:2021-07-17 19:58:40

Ⅰ 大數據在金融領域中有哪些應用

大數據在金融領域中有哪些應用?應用很廣,定價、授信、風控領域尤其多,我這邊主要用到的分析軟體是單位的帆軟FineBI系統,應用案例隨便說兩個:
車險。其實根據車主的日常行車路線、里程、行車習慣、出險記錄、職業、年齡、性別,可以給出非常不同的定價。比如一個開中級車,每天固定路線往返幾公里通勤的熟練女白領車主,和一個開同樣車型每天在珠三角或者長三角跑生意的中年暴躁小老闆車主,假設後者出險概率是前者的3倍,那麼完全可以定3倍於前者的價格(商業部分)。對於保險公司,前者才是優質客戶,後者做了生意也是賠錢貨,不如趕到競爭對手那裡去。

貸款。現在各種小額貸款、消費貸款、供應鏈金融,都是在吃4大行懶得吃的散客市場,之所以他們懶得吃,就是怕麻煩。最麻煩的就是授信環節,對於一個沒有固定資產等擔保物的客戶,能授信多少額度是個問題。淘寶能做小微是因為商家的流水在他們手裡,白領的消費貸敢做是因為有穩定的現金流收入。但除了淘寶可以做到比較准確的模型,其他的業務都非常的粗放,基本每個領域都是根據幾條死規則來做業務。這意味著這個市場還有很大的潛力可以挖掘,比如一個小老闆,其實風險不大,他需要100w周轉,但你沒把握估算他的風險,只敢貸50w出去,就少賺了那50w的利息。

Ⅱ 如何應用大數據進行保險行業的數據分析

要分析,先採集。

對於保險行業來說,這個很有必要。

保險行業太大,太雜,因此信息量很大。

保險公司需要知道目前的行業發展情況,競爭對手的情況,產品公司的形象等,這些數據基本上來源於互聯網的公開信息,論壇,貼吧,微信,微博等。

保險公司最為迫切的事情是:通過先進的信息採集技術,建立完善的輿情監測機制。

Web是一個巨大的資源寶庫,目前頁面數目已超過800億,每小時還以驚人的速度增長,裡面有你需要的大量有價值的信息,例如潛在客戶的列表與聯系信息,競爭產品的價格列表,實時金融新聞,供求信息,論文摘要等等。

可是由於關鍵信息都是以半結構化或自由文本形式存在於大量的HTML網頁中,很難直接加以利用。


實施以後,能夠獲得大量的利益:

對目標網站進行信息自動抓取,支持HTML頁面內各種數據的採集,如文本信息,URL,數字,日期,圖片等
♦ 用戶對每類信息自定義來源與分類-采3453輿情4533集-
♦ 可以下載圖片與各類文件
♦ 支持用戶名與密碼自動登錄
♦ 支持命令行格式,可以Windows任務計劃器配合,定期抽取目標網站
♦ 支持記錄唯一索引,避免相同信息重復入庫
♦ 支持智能替換功能,可以將內容中嵌入的所有的無關部分如廣告去除
♦ 支持多頁面文章內容自動抽取與合並
♦ 支持下一頁自動瀏覽功能
♦ 支持直接提交表單
♦ 支持模擬提交表單
♦ 支持動作腳本
♦ 支持從一個頁面中抽取多個數據表
♦ 支持數據的多種後期處理方式
♦ 數據直接進入資料庫而不是文件中,因此與利用這些數據的網站程序或者桌面程序之間沒有任何耦合
♦ 支持資料庫表結構完全自定義,充分利用現有系統
♦ 支持多個欄目的信息採集可用同一配置一對多處理
♦ 保證信息的完整性與准確性,絕不會出現亂碼26禁止9盜用0
♦ 支持所有主流資料庫:MS SQL Server, Oracle, DB2, MySQL, Sybase, Interbase, MS Access等

Ⅲ 利用大數據分析將保險業風險防控做到極致

利用大數據分析將保險業風險防控做到極致
互聯時代,特別是移動互聯網日漸普及之後,大數據的搜集變得更為方便和可行,大數據的應用價值受到了各行各業的關注,甚至大數據本身也成了一個專門產業。保險作為基於大數法則運營發展的商業行為,對大數據的利用有著天然的傾向性。筆者圍繞風險防控這一經營實務,圍繞核保、核賠這兩大關鍵節點,探討大數據分析在風險防控中的應用,分析優勢性,指出限制性,並基於行業現狀對大數據分析的發展提出建議。
保險業面臨風險控制新挑戰
雖然風險防控是保險業發展過程中永恆的課題,但是隨著經濟社會的發展,新風險點層出不窮,惡意欺詐手段不斷翻新,保險業風險防控受到的更為嚴峻的沖擊。具體表現為:
1.行業競爭倒逼核保和理賠速度的提升,可能帶來核保、核賠質量下降的負面影響。從純理論角度和最理想化的角度來講,核保和核賠這兩個環節是可以為保險公司屏蔽所有逆選擇和道德風險的。但付出的代價是用大量的人力對每個投保和理賠申請都進行大量的細致調查。這在保險公司實際運營中是不可能的。特別是在行業競爭越來越激烈的今天,為提升客戶體驗,保險公司的投保條件愈發寬松,核保核賠速度快,甚至免核保、免體檢、快速賠付已經成為保險公司吸引客戶的「標配」所在。各家公司千方百計提高服務速度,核保核賠部門往往要承受客戶和銷售部門的雙重壓力。在此情況下,雖然保險公司的保費收入有了較大增長,但是承受的風險沖擊將明顯增大。公司管理層對業績增長的期待,或多或少沖淡了本該固若金湯的風控意識。
2.互聯網保險的發展,客觀上增加了風險控制的難度。如今,網路銷售、移動互聯網銷售日益被保險公司所重視。各種保險銷售網站,成為了保險公司新的保費增長點。甚至客戶通過手機微信等軟體終端,就可以輕松完成投保或理賠過程,在這種情況下,材料真實性驗證難度較大,信息不對稱性更為突出,機會型欺詐風險增加。異地出險的增加,也對理賠後續工作提出較高要求,容易出現保險服務流程銜接的空白。在傳統保險銷售過程中,銷售人員與客戶面對面地溝通,其實也是一種了解客戶的過程。但是互聯網保險的發展讓這個過程消失。核保部門失去了一道天然屏障。這些都是增加了風險控制的難度。
大數據分析在保險業風險防控中的實際意義
雖然互聯網技術的發展,給傳統思維下的風險防控帶來了巨大的挑戰。但是筆者認為,任何新技術的進步都是雙刃劍。而且解鈴還須系鈴人,互聯網技術帶來的「麻煩」也必將由互聯網技術本身來開出葯方。這個葯方就是大數據分析。
IBM公司曾用5個特徵來描述大數據,既大量、高速、多樣、低價值密度、真實性。這些特徵其實也表明了大數據對風險防控的意義。
1.大數據時代下,核保環節通過大數據分析有條件對客戶進行系統性風險掃描。具體來講,在傳統核保過程中,客戶告知什麼,保險公司就審核什麼。核保人員要從有限的告知信息中,發現風險點的蛛絲馬跡。這個過程中的風控主要依靠客戶的誠信水平和核保人員的工作經驗。而且大量的投保告知,也挑戰了客戶的耐心。面對大量的提問,客戶很有可能引起反感,不認真填寫告知內容或乾脆放棄購買保險產品。但在大數據條件下,保險公司有條件從資料庫中獲取客戶的大量相關信息。比如通過了解客戶的就醫記錄,可以准確推斷客戶的健康狀況;通過查詢客戶在各家保險公司的既往投保記錄,可以分析投保人有無重復投保、短期內大額投保等高風險行為,等等。這些都將打破既往核保的管理思路,使得核保過程更加精確化。同時客戶需要進行的投保告知大大減少,只要授權保險公司查詢相關信息,即可快速得到核保結果。
2.大數據時代下,核賠環節通過大數據分析更可能發現理賠欺詐的線索,堵住風險漏洞。傳統的核賠過程中,主要靠核賠人員的經驗甄別風險,靠調查人員有意識的排查堵住理賠欺詐的發生。這種情況下,人為製造保險事故、虛報並不真實存在的保險事故、誇大保險事故損失金額,都成為可能發生的情況。但在大數據條件下,保險公司不同地區的既往理賠數據,甚至不同保險公司之間的理賠數據有可能匯聚成一個超級資料庫。任何理賠申請,都可以先經過資料庫的檢驗。
3.大數據分析輔助風險控制的理論研究,已經有了一定的積累,為進一步應用打下了基礎。近年來,大數據的開發應用不僅得到了實務界的關注,也吸引了理論界進行更為細致的研究,並取得了一定成果。例如欺詐分析技術,就是綜合了大數據模型、統計技術和人工智慧在反保險欺詐領域的一項應用。目前這項技術已有了比較完整的理論模型,建立了相應的演算法體系,具體包括有監督演算法和無監督演算法。筆者認為,這些理論研究雖然對保險實務從業者來講有一些晦澀,但是今後的大數據分析甚至人工智慧在保險業的應用,就是建立在這些理論研究基礎之上的。
基於大數據技術提升保險業風險控制
結合大數據技術本身的發展要求,以及當前保險公司實際運營情況。筆者在這部分將提出大數據時代提升保險業風險控制的具體工作建議。
1.以資料庫建設為基礎,在內部數據資源整合的基礎上,爭取建立全行業共享的大數據平台。在這里所討論的所有大數據分析的優勢,都建立在保險公司能夠收集到海量有價值數據的基礎之上。這種數據資源的整理,首先是公司內部資源的整理。特別是對於混業經營的大型金融集團來說,內部已有的數據資源整合就已經是非常偉大的成就。要讓各家公司共享信息,註定是艱難的,這需要行業協會、監管部門的推動,需要各家公司站在更長遠的角度展望保險業的發展。
2.保險公司要千方百計提升IT技術水平,儲備大數據分析的技術力量。大數據分析對資料庫技術的要求是比較高的,公司網路系統和數據計算能力面臨考驗。更為重要的是,如果要想進一步開發大數據資源,就必須有專門的統計分析人才。技術儲備,不是過往運營數據分析等簡單的數據開發,而是一整套科學的體系。保險公司有必要提前進行技術儲備。
3.大數據分析過程中,要特別注意數據安全和客戶信息的保密管理。大數據和互聯網一樣,也是一把雙刃劍。保險公司挖掘好這座寶藏,能夠在風險防控上取得事半功倍的效果。但同時也擔負著維護數據安全的重任。海量的個人信息數據存儲在保險公司,一旦泄露後果不堪設想。單個的數據泄露就可能引起客戶的訴訟。批量的數據泄露,可能給公司帶來的就是滅頂之災。從法務角度來講,保險公司在引用客戶信息之前,要取得客戶授權,規避法律風險。同時要盡可能依靠大數據分析,通過簡單的客戶信息就推斷出某類業務的風險。
總之,風險控制是保險公司穩健經營的重要一環。在大數據時代,保險業必然要利用新技術手段,將風險防控工作做到極致,為公司和行業的發展創造價值。

Ⅳ 大數據在金融業的應用可以發揮哪些作用

有了大數據,自然就要有大數據技術,即從各種各樣類型的巨量數據中,快速獲取有價值信息的技術,強調快,這是大數據技術與傳統數據挖掘技術的重要區別。
從巨量數據中提取的有價值信息,即是大數據在各個領域的具體運用,比如基於大數據進行客群的細分,進而提供定製化服務;基於大數據模擬現實環境,進而進行精準評估和預測;基於大數據進行產品和模式創新,降低業務成本、提升經營效率等等。

Ⅳ 談談大數據在金融行業的應用有哪些

最直接的,哪些客戶貸款的風險比較大,哪些比較小,其實可應用的地方比較多

Ⅵ 如何利用大數據控制金融風險

互聯網金融(ITFIN)是指傳統金融機構與互聯網企業利用互聯網技術和信息通信技術實現資金融通、支付、投資和信息中介服務的新型金融業務模式。
大數據(big data),指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。
任何投資都具備風險,不僅是在互聯網的金融領域里存在。大數據的主要作用,是針對以往及現在的金融情況,進行數據分析,得出結果,預測未來金融方向的走向。
但是,金融除了受到經濟發展的影響之外,也受到政治的影響。因此,只是靠大數據是無法對互聯網金融進行控制,只能是最大化的規避風險,最小化的降低損失,獲得高回報的收益。

Ⅶ 大數據在金融領域有何應用

你好!大數據在當今社會任何一個領域都有很大用處,比如金融領域,這樣可以通過大數據幫助投資者投資

Ⅷ 大數據可以應用於保險行業嗎

大數據是指無法在一定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。大數據技術,是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。

閱讀全文

與大數據金融在保險的運用相關的資料

熱點內容
地獄解剖類型電影 瀏覽:369
文定是什麼電影 瀏覽:981
什麼影院可以看VIP 瀏覽:455
受到刺激後身上會長櫻花的圖案是哪部電影 瀏覽:454
免費電影在線觀看完整版國產 瀏覽:122
韓國雙胞胎兄弟的愛情電影 瀏覽:333
法國啄木鳥有哪些好看的 瀏覽:484
能看片的免費網站 瀏覽:954
七八十年代大尺度電影或電視劇 瀏覽:724
歐美荒島愛情電影 瀏覽:809
日本有部電影女教師被學生在教室輪奸 瀏覽:325
畸形喪屍電影 瀏覽:99
美片排名前十 瀏覽:591
韓國電影新媽媽女主角叫什麼 瀏覽:229
黑金刪減了什麼片段 瀏覽:280
泰國寶兒的電影有哪些 瀏覽:583
3d左右格式電影網 瀏覽:562
跟師生情有關的電影 瀏覽:525
恐怖鬼片大全免費觀看 瀏覽:942
電影里三節是多長時間 瀏覽:583