業內專家稱,在一系列監管「組合拳」下,保險業系統性風險得到有效防控,重點領域和問題公司的一些突出風險得到有效化解,存量風險逐步消化,增量風險得到嚴格控制。目前,保險業各項主要指標運行平穩,風險抵禦能力穩步提升。保險業償付能力總體充足,截至2017年三季度末,保險公司平均綜合償付能力充足率為253%,平均核心償付能力充足率為241%,顯著高於達標線。
業內人士預計,2018年,保險業仍將保持穩健增長。保費方面,保險產品需求依然廣闊,健康、養老等險種未來空間很大。利潤方面,主要受益於准備金折現率上行帶來的利潤釋放,同時剩餘邊際攤銷的加速都可以保障2018年上市險企利潤的增長。未來保險股的價值會隨著內含價值的增長獲得穩步的提升。投資端,2017年以來保險資金投資於股票和基金的比例均保持在13%左右,如果2018年投資比例維持13%,並考慮部分資金投入港股市場,預計給A股帶來增量資金約2900億元。
Ⅱ 如何做好保險公司風險隱患全面排查及報告工作
做好保險公司風險隱患全面排查建議從兩個大范圍開始:
一、內部;
1、加強公司一線業務人員對風險管控、風險初審基本知識的學習與控制。
2、提倡、推動業務人員對客戶保險風險隱患的宣傳。
3、加強櫃面審單人員對風險隱患的學習與嚴格把控
4、做好服務大廳、職場風險隱患提示語的張貼
二、外部;
做好對外保險風險隱患的大力宣傳力度。
媒體、宣傳欄、報紙等
Ⅲ 利用大數據分析將保險業風險防控做到極致
利用大數據分析將保險業風險防控做到極致
互聯時代,特別是移動互聯網日漸普及之後,大數據的搜集變得更為方便和可行,大數據的應用價值受到了各行各業的關注,甚至大數據本身也成了一個專門產業。保險作為基於大數法則運營發展的商業行為,對大數據的利用有著天然的傾向性。筆者圍繞風險防控這一經營實務,圍繞核保、核賠這兩大關鍵節點,探討大數據分析在風險防控中的應用,分析優勢性,指出限制性,並基於行業現狀對大數據分析的發展提出建議。
保險業面臨風險控制新挑戰
雖然風險防控是保險業發展過程中永恆的課題,但是隨著經濟社會的發展,新風險點層出不窮,惡意欺詐手段不斷翻新,保險業風險防控受到的更為嚴峻的沖擊。具體表現為:
1.行業競爭倒逼核保和理賠速度的提升,可能帶來核保、核賠質量下降的負面影響。從純理論角度和最理想化的角度來講,核保和核賠這兩個環節是可以為保險公司屏蔽所有逆選擇和道德風險的。但付出的代價是用大量的人力對每個投保和理賠申請都進行大量的細致調查。這在保險公司實際運營中是不可能的。特別是在行業競爭越來越激烈的今天,為提升客戶體驗,保險公司的投保條件愈發寬松,核保核賠速度快,甚至免核保、免體檢、快速賠付已經成為保險公司吸引客戶的「標配」所在。各家公司千方百計提高服務速度,核保核賠部門往往要承受客戶和銷售部門的雙重壓力。在此情況下,雖然保險公司的保費收入有了較大增長,但是承受的風險沖擊將明顯增大。公司管理層對業績增長的期待,或多或少沖淡了本該固若金湯的風控意識。
2.互聯網保險的發展,客觀上增加了風險控制的難度。如今,網路銷售、移動互聯網銷售日益被保險公司所重視。各種保險銷售網站,成為了保險公司新的保費增長點。甚至客戶通過手機微信等軟體終端,就可以輕松完成投保或理賠過程,在這種情況下,材料真實性驗證難度較大,信息不對稱性更為突出,機會型欺詐風險增加。異地出險的增加,也對理賠後續工作提出較高要求,容易出現保險服務流程銜接的空白。在傳統保險銷售過程中,銷售人員與客戶面對面地溝通,其實也是一種了解客戶的過程。但是互聯網保險的發展讓這個過程消失。核保部門失去了一道天然屏障。這些都是增加了風險控制的難度。
大數據分析在保險業風險防控中的實際意義
雖然互聯網技術的發展,給傳統思維下的風險防控帶來了巨大的挑戰。但是筆者認為,任何新技術的進步都是雙刃劍。而且解鈴還須系鈴人,互聯網技術帶來的「麻煩」也必將由互聯網技術本身來開出葯方。這個葯方就是大數據分析。
IBM公司曾用5個特徵來描述大數據,既大量、高速、多樣、低價值密度、真實性。這些特徵其實也表明了大數據對風險防控的意義。
1.大數據時代下,核保環節通過大數據分析有條件對客戶進行系統性風險掃描。具體來講,在傳統核保過程中,客戶告知什麼,保險公司就審核什麼。核保人員要從有限的告知信息中,發現風險點的蛛絲馬跡。這個過程中的風控主要依靠客戶的誠信水平和核保人員的工作經驗。而且大量的投保告知,也挑戰了客戶的耐心。面對大量的提問,客戶很有可能引起反感,不認真填寫告知內容或乾脆放棄購買保險產品。但在大數據條件下,保險公司有條件從資料庫中獲取客戶的大量相關信息。比如通過了解客戶的就醫記錄,可以准確推斷客戶的健康狀況;通過查詢客戶在各家保險公司的既往投保記錄,可以分析投保人有無重復投保、短期內大額投保等高風險行為,等等。這些都將打破既往核保的管理思路,使得核保過程更加精確化。同時客戶需要進行的投保告知大大減少,只要授權保險公司查詢相關信息,即可快速得到核保結果。
2.大數據時代下,核賠環節通過大數據分析更可能發現理賠欺詐的線索,堵住風險漏洞。傳統的核賠過程中,主要靠核賠人員的經驗甄別風險,靠調查人員有意識的排查堵住理賠欺詐的發生。這種情況下,人為製造保險事故、虛報並不真實存在的保險事故、誇大保險事故損失金額,都成為可能發生的情況。但在大數據條件下,保險公司不同地區的既往理賠數據,甚至不同保險公司之間的理賠數據有可能匯聚成一個超級資料庫。任何理賠申請,都可以先經過資料庫的檢驗。
3.大數據分析輔助風險控制的理論研究,已經有了一定的積累,為進一步應用打下了基礎。近年來,大數據的開發應用不僅得到了實務界的關注,也吸引了理論界進行更為細致的研究,並取得了一定成果。例如欺詐分析技術,就是綜合了大數據模型、統計技術和人工智慧在反保險欺詐領域的一項應用。目前這項技術已有了比較完整的理論模型,建立了相應的演算法體系,具體包括有監督演算法和無監督演算法。筆者認為,這些理論研究雖然對保險實務從業者來講有一些晦澀,但是今後的大數據分析甚至人工智慧在保險業的應用,就是建立在這些理論研究基礎之上的。
基於大數據技術提升保險業風險控制
結合大數據技術本身的發展要求,以及當前保險公司實際運營情況。筆者在這部分將提出大數據時代提升保險業風險控制的具體工作建議。
1.以資料庫建設為基礎,在內部數據資源整合的基礎上,爭取建立全行業共享的大數據平台。在這里所討論的所有大數據分析的優勢,都建立在保險公司能夠收集到海量有價值數據的基礎之上。這種數據資源的整理,首先是公司內部資源的整理。特別是對於混業經營的大型金融集團來說,內部已有的數據資源整合就已經是非常偉大的成就。要讓各家公司共享信息,註定是艱難的,這需要行業協會、監管部門的推動,需要各家公司站在更長遠的角度展望保險業的發展。
2.保險公司要千方百計提升IT技術水平,儲備大數據分析的技術力量。大數據分析對資料庫技術的要求是比較高的,公司網路系統和數據計算能力面臨考驗。更為重要的是,如果要想進一步開發大數據資源,就必須有專門的統計分析人才。技術儲備,不是過往運營數據分析等簡單的數據開發,而是一整套科學的體系。保險公司有必要提前進行技術儲備。
3.大數據分析過程中,要特別注意數據安全和客戶信息的保密管理。大數據和互聯網一樣,也是一把雙刃劍。保險公司挖掘好這座寶藏,能夠在風險防控上取得事半功倍的效果。但同時也擔負著維護數據安全的重任。海量的個人信息數據存儲在保險公司,一旦泄露後果不堪設想。單個的數據泄露就可能引起客戶的訴訟。批量的數據泄露,可能給公司帶來的就是滅頂之災。從法務角度來講,保險公司在引用客戶信息之前,要取得客戶授權,規避法律風險。同時要盡可能依靠大數據分析,通過簡單的客戶信息就推斷出某類業務的風險。
總之,風險控制是保險公司穩健經營的重要一環。在大數據時代,保險業必然要利用新技術手段,將風險防控工作做到極致,為公司和行業的發展創造價值。