⑴ ARIMA時間序列建模過程——原理及python實現
原文鏈接:http://tecdat.cn/?p=20742
時間序列被定義為一系列按時間順序索引的數據點。時間順序可以是每天,每月或每年。
以下是一個時間序列示例,該示例說明了從1949年到1960年每月航空公司的乘客數量。
最受歡迎的見解
1.在python中使用lstm和pytorch進行時間序列預測
2.python中利用長短期記憶模型lstm進行時間序列預測分析
3.使用r語言進行時間序列(arima,指數平滑)分析
4.r語言多元copula-garch-模型時間序列預測
5.r語言copulas和金融時間序列案例
6.使用r語言隨機波動模型sv處理時間序列中的隨機波動
7.r語言時間序列tar閾值自回歸模型
8.r語言k-shape時間序列聚類方法對股票價格時間序列聚類
9.python3用arima模型進行時間序列預測
⑵ 關於時間序列分析的ARMA模型擬合問題,殘差白雜訊檢驗通不過怎麼辦
低是有多低?這里擬合優度到也不是那麼地重要,做ECM時有人R²在0.3左右也能用,甚至還有paper中擬合有毒零點零幾的,應該沒關系
⑶ ARIMA能預測股票嗎
不能,股票的價格是眾多大小投資者共同作用的結果。
⑷ 如何用Arma模型做股票估計
時間序列分析是經濟領域應用研究最廣泛的工具之一,它用恰當的模型描述歷史數據隨時間變化的規律,並分析預測變數值。ARMA模型是一種最常見的重要時間序列模型,被廣泛應用到經濟領域預測中。給出ARMA模型的模式和實現方法,然後結合具體股票數據揭示股票變換的規律性,並運用ARMA模型對股票價格進行預測。
選取長江證券股票具體數據進行實證分析
1.數據選取。
由於時間序列模型往往需要大樣本,所以這里我選取長江證券從09/03/20到09/06/19日開盤價,前後約三個月,共計60個樣本,基本滿足ARMA建模要求。
數據來源:大智慧股票分析軟體導出的數據(股價趨勢圖如下)
從上圖可看出有一定的趨勢走向,應為非平穩過程,對其取對數lnS,再觀察其平穩性。
2.數據平穩性分析。
先用EVIEWS生成新序列lnS並用ADF檢驗其平穩性。
(1)ADF平穩性檢驗,首先直接對數據平穩檢驗,沒通過檢驗,即不平穩。
可以看出lnS沒有通過檢驗,也是一個非平穩過程,那麼我們想到要對其進行差分。
(2)一階差分後平穩性檢驗,ADF檢驗結果如下,通過1%的顯著檢驗,即數據一階差分後平穩。
可以看出差分後,明顯看出ADF Test Statistic 為-5.978381絕對值是大於1%的顯著水平下的臨界值的,所以可以通過平穩性檢驗。
3.確定適用模型,並定階。可以先生成原始數據的一階差分數據dls,並觀測其相關系數AC和偏自相關系數PAC,以確定其是為AR,MA或者是ARMA模型。
(1)先觀測一階差分數據dls的AC和PAC圖。經檢驗可以看出AC和PAC皆沒有明顯的截尾性,嘗試用ARMA模型,具體的滯後項p,q值還需用AIC和SC具體確定。
(2)嘗試不同模型,根據AIC和SC最小化的原理確定模型ARMA(p,q)。經多輪比較不同ARMA(p,q)模型,可以得出相對應AIC 和 SC的值。
經過多次比較最終發現ARMA(1,1)過程的AIC和SC都是最小的。最終選取ARIMA(1,1,1)模型作為預測模型。並得出此模型的具體表達式為:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的檢驗。選取ARIMA(1,1,1)模型,定階和做參數估計後,還應對其殘差序列進行檢驗,對其殘差的AC和Q統計檢驗發現其殘差自相關基本在0附近,且Q值基本通過檢驗,殘差不明顯存在相關,即可認為殘差中沒有包含太多信息,模型擬合基本符合。
5.股價預測。利用以上得出的模型,然後對長江證券6月22日、23日、24日股價預測得出預測值並與實際值比較如下。
有一定的誤差,但相比前期的漲跌趨勢基本吻合,這里出現第一個誤差超出預想的是因為6月22日正好是禮拜一,波動較大,這里正驗證了有研究文章用GARCH方法得出的禮拜一波動大的結果。除了禮拜一的誤差大點,其他日期的誤差皆在接受范圍內。
綜上所述,ARMA模型較好的解決了非平穩時間序列的建模問題,可以在時間序列的預測方面有很好的表現。藉助EViews軟體,可以很方便地將ARMA模型應用於金融等時間序列問題的研究和預測方面,為決策者提供決策指導和幫助。當然,由於金融時間序列的復雜性,很好的模擬還需要更進一步的研究和探討。在後期,將繼續在這方面做出自己的摸索。
⑸ eviews中運用某個股票的價格擬合ARIMA模型,如何處理其中的缺失值
eviews擬合ARIMA模型問題均可+名中我QQ來給以解決。
⑹ 白雜訊時間序列不能建立ARMA模型嗎
不可以,白雜訊就是一系列獨立分布的正態序列:序列無相關性,無趨勢性,有隨機性,它服從均值為0,方差為σ2的正態分布,白雜訊的每一個時序點都是服從正態分布的。
希望的白雜訊序列{e0,e1,...,et,...}是相互獨立的(這時{ et}序列是嚴平穩的)。但是獨立性是很難驗證出來的,我們只能驗證相關性。{ei, ej }不相關並不意味著e;和e;的生成是獨立的。見這里的不相關卻不獨立的例子。
然而,當{et}列是高斯的,{ei;, ej }間是不相關的,則意味著{ei, ej }是獨立的。著就是我們為什麼喜歡高斯白雜訊的原因。也就是,生成高斯白雜訊,列需要從高斯分布中隨機采樣(不能按照某種規律采樣)。
(6)arma模型股票擴展閱讀
白雜訊的特點:
它的幅度遵從高斯(正態)分布,而功率譜類似於白色光譜,均勻分布於整個頻率軸,故稱為白雜訊。白雜訊主要包含三類:無源器件,如電阻、饋線等類導體中電子布朗運動引起的熱雜訊。
有源器件,如真空電子管和半導體器件中由於電子發射的不均勻性引起的散粒雜訊;以及宇宙天體輻射波對接收機形成的宇宙雜訊。其中前兩類是主要的。
通信中的各類雜訊,有些可以消除,有些可以避免,還有些可以減小。唯獨以內部雜訊為主的白雜訊,無論在時域還是頻域,總是普遍存在和不可避免的,因而成為通信中各類雜訊的重點研究對象。
⑺ 畢設用hilbert huang和ARMA模型結合對股票價格預測,請問要怎麼做
學弟,作為剛剛畢業的過來人,學長提示你,這種事情多去圖書館查記得深,你這樣不僅效果慢,而且記得不牢,答辯是會遇到問題的
⑻ spss DW偏小 除了用ARIMA模型 還能用什麼呢因為樣本是4年內的多支股票 而且有的股票只有1~2年的數據
1.5偏小了
每個人的情況都不一樣的啊
我經常幫別人做類似的數據分析的
⑼ 怎麼從arma的結果圖看各個變數的系數
利用以上得出的模型.ARMA模型的檢驗。最終選取ARIMA(1。給出ARMA模型的模式和實現方法,然後結合具體股票數據揭示股票變換的規律性,模型擬合基本符合。
5.股價預測,首先直接對數據平穩檢驗,並運用ARMA模型對股票價格進行預測。
選取長江證券股票具體數據進行實證分析
1.數據選取,即可認為殘差中沒有包含太多信息。在後期,再觀察其平穩性,對其殘差的AC和Q統計檢驗發現其殘差自相關基本在0附近。
由於時間序列模型往往需要大樣本。經檢驗可以看出AC和PAC皆沒有明顯的截尾性,嘗試用ARMA模型,具體的滯後項p,q值還需用AIC和SC具體確定。
(2)嘗試不同模型,根據AIC和SC最小化的原理確定模型ARMA(p。
數據來源:大智慧股票分析軟體導出的數據(股價趨勢圖如下)
從上圖可看出有一定的趨勢走向,應為非平穩過程,對其取對數lnS,1,所以這里我選取長江證券從09/03。選取ARIMA(1,且Q值基本通過檢驗,1)模型,定階和做參數估計後,還應對其殘差序列進行檢驗;20到09,然後對長江證券6月22日、23日、24日股價預測得出預測值並與實際值比較如下。
有一定的誤差;06/19日開盤價,即不平穩。
可以看出lnS沒有通過檢驗,也是一個非平穩過程,那麼我們想到要對其進行差分。
(2)一階差分後平穩性檢驗,ADF檢驗結果如下,通過1%的顯著檢驗,即數據一階差分後平穩,波動較大,這里正驗證了有研究文章用GARCH方法得出的禮拜一波動大的結果。除了禮拜一的誤差大點。可以先生成原始數據的一階差分數據dls,但相比前期的漲跌趨勢基本吻合,這里出現第一個誤差超出預想的是因為6月22日正好是禮拜一,沒通過檢驗,前後約三個月,共計60個樣本,基本滿足ARMA建模要求。
經過多次比較最終發現ARMA(1,1)過程的AIC和SC都是最小的,q)。經多輪比較不同ARMA(p,q)模型,並定階。
2,明顯看出ADF Test Statistic 為-5.978381絕對值是大於1%的顯著水平下的臨界值的,所以可以通過平穩性檢驗。
3.確定適用模型.數據平穩性分析。
(1)先觀測一階差分數據dls的AC和PAC圖。
先用EVIEWS生成新序列lnS並用ADF檢驗其平穩性。
(1)ADF平穩性檢驗,殘差不明顯存在相關,1。
可以看出差分後,被廣泛應用到經濟領域預測中,MA或者是ARMA模型,可以得出相對應AIC 和 SC的值,1)模型作為預測模型。並得出此模型的具體表達式為:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4,並觀測其相關系數AC和偏自相關系數PAC,以確定其是為AR,ARMA模型較好的解決了非平穩時間序列的建模問題,可以在時間序列的預測方面有很好的表現。藉助EViews軟體,可以很方便地將ARMA模型應用於金融等時間序列問題的研究和預測方面,為決策者提供決策指導和幫助。當然,由於金融時間序列的復雜性,很好的模擬還需要更進一步的研究和探討時間序列分析是經濟領域應用研究最廣泛的工具之一,它用恰當的模型描述歷史數據隨時間變化的規律,並分析預測變數值,其他日期的誤差皆在接受范圍內。
綜上所述。ARMA模型是一種最常見的重要時間序列模型