1. RSI選股策略詳解
(1)RSI金叉:股票的多頭力量開始強於空頭力量,股價將大幅揚升,這是RSI指標指示的中線買入信號。(2)突破均線,放量:當股票同時帶量向上突破中長期均線時出現的買入信號比較准確,投資者可逢低買入。
2. 模型中的r,f,m三個要素對網店的客戶分級管理有何作用
SVM理論統計習理論基礎發展起,由於統計習理論SVM限本情況模式識別些根本性問題進行系統理論研究,程度解決往機器習模型選擇與習問題、非線性維數災難、局部極點問題等應用SVM進行歸預測步驟具體: 一)實驗規模選取,決定訓練集數量、測試集數量,及兩者比例;二)預測參數選取;三)實驗數據進行規范化處理;四)核函數確定;5)核函數參數確定其參數選擇SVM性能說十重要,於本文核函數使用RBF核函數,於RBF核函數,SVM參數包括折衷參數C、核寬度C敏參數E目前SVM參數、核函數參數選擇,際都沒形統模式,說優SVM算參數選擇能憑借經驗、實驗比、范圍搜尋交叉檢驗等進行尋優實際應用經便,主觀設定較數作E取值,本文首先CC定范圍內取值訓練,定各參數取值概范圍,利用留具體選定參數值 股價間序列SVM模型高階確定 股價數據間序列,間序列特徵析知,股價具滯、效性,股價僅與各種特徵關,與前幾股價及特徵相關,所必要前幾股價特徵作自變數考慮高階確定基本原理低階始系統建模,逐步增加模型階數,並用F檢驗些模型進行判別確定高階n,才能更客觀反映股票價格滯特性具體操作步驟:假定輸入單輸歸模型N本、變數(股價)、m- 一自變數(特徵),由低階高階遞推採用SVM模型擬合系統(拓階昨股價做自變數,特徵同拓階),並依相鄰兩SVM模型採用F檢驗判斷模型階增加否合適[ 漆]相鄰兩模型SVM ( n)SVM ( n+ 一)言,統計量Fi:Fi=QSVR (n)- QSVR( n+一)QSVR (n)一N - m n - (m -一)mi =一,二,,, n(一)服自由度別m(N - m n - (m -一) )F布,其QSVR (n)QSVR( n+一)別SVR ( n)QSVR( n+一)剩餘離差平,若Fi< F(?,m, N-m n- (m-一) ),則SVM (n )模型合適;反,繼續拓展階數 前向浮特徵篩選 經述模型高階數確定,雖確定階數nSVM模型,即n特徵,其某些特徵模型預測精度利影響,本文採用基於SVM留前向浮特徵特徵篩選算選擇提高預測精度利影響特徵令B= {xj: j=一,二,,, k}表示特徵全集, Am表示由Bm特徵組特徵集,評價函數MSE (Am)MSE (Ai) i =一,二,,, m -一值都已知本文採用前向浮特徵篩選算[9]:一)設置m =0, A0空集,利用前向特徵篩選尋找兩特徵組特徵集Am(m =二);二)使用前向特徵篩選未選擇特徵集(B -Am)選擇特徵xm +一,集Am+一;三)迭代數達預設值則退,否則執行四);四)選擇特徵集Am+一重要特徵xm+一重要特徵即任意jXm +一, J (Am +一- xm+一)FJ(Am +一- xj)立,令m = m +一,返二) (由於xm+一重要特徵,所需Am排除原特徵);重要特徵xr( r =一,二,,, m )且MSE (Am+一- xr) < MSE (Am)立,排除xr,令A'm= Am+一- xr;m =二,設置Am= A'm,J (Am) = J (A'm), ,返二),否則轉向步驟5);5)特徵集A'm尋找重要特徵xs,MSE (A'm- xs)EM SE (Am-一),設置Am= A'm, MSE (Am)= MSE (A'm),返二);M SE (A'm- xs) < M SE (Am -一),A'm排除xs,A'm-一= Am- xs,令m = m -一;m =二,設置Am= A'm, MSE (Am) = MSE (A'm)返二),否則轉向5)選擇特徵用於續建模預測 預測評價指標及參比模型 訓練結評估階段訓練模型推廣能力進行驗證,所謂推廣能力指經訓練模型未訓練集現本做確反應能力評價本文模型優劣,選擇BPANN、變數自歸間序列模型( CAR)沒進行拓階特徵篩選SVM作參比模型採用均誤差(mean squared error, MSE)平均絕誤差百率(mean ab-solute percentage error, MAPE)作評價指標MSEMAP定義:M SE=E(yi- y^i)二n( 二)MAPE=E| yi- y^i| /yin( 三)其yi真值, y^i預測值, n預測本數M SE, MAPE結較,則說明該評估模型推廣能力強,或泛化能力強,否則說明其推廣能力較
3. 目前最流行的機器學習演算法是什麼
毫無疑問,機器學習在過去幾年越來越受歡迎。由於大數據是目前技術行業最熱門的趨勢,機器學習是非常強大的,可以根據大量數據進行預測或計算推理。
如果你想學習機器演算法,要從何下手呢?
監督學習
1. 決策樹:決策樹是一種決策支持工具,使用的決策及其可能產生的後果,包括隨機事件的結果,資源消耗和效用的樹狀圖或模型。
從業務決策的角度來看,決策樹是人們必須要選擇是/否的問題,以評估大多數時候作出正確決策的概率。它允許您以結構化和系統的方式來解決問題,以得出邏輯結論。
2.樸素貝葉斯分類:樸素貝葉斯分類器是一種簡單的概率分類器,基於貝葉斯定理,其特徵之間具有強大(樸素)的獨立性假設。
特徵圖像是方程 - P(A | B)是後驗概率,P(B | A)是似然度,P(A)是類先驗概率,P(B)是預測先驗概率。
一些現實世界的例子是:
判斷郵件是否為垃圾郵件
分類技術,將新聞文章氛圍政治或體育類
檢查一段表達積極情緒或消極情緒的文字
用於面部識別軟體
3.普通最小二乘回歸:如果你了解統計學,你可能已經聽說過線性回歸。最小二乘法是一種執行線性回歸的方法。
您可以將線性回歸視為擬合直線穿過點狀分布的任務。有多種可能的策略可以做到這一點,「普通最小二乘法」策略就像這樣 -你可以畫一條線,然後把每個數據點,測量點和線之間的垂直距離,添加上去;擬合線將是距離總和的盡可能小的線。
線性是指您正在使用的模型來迎合數據,而最小二乘可以最小化線性模型誤差。
4.邏輯回歸: Logistic回歸是一個強大的統計學方法,用一個或多個解釋變數建模二項式結果。它通過使用邏輯函數估計概率,來衡量分類因變數與一個或多個獨立變數之間的關系,後者是累積邏輯分布。
邏輯回歸用於生活中:
信用評級
衡量營銷活動的成功率
預測某一產品的收入
某一天會有地震嗎
5.支持向量機: SVM是二元分類演算法。給定N維空間中兩種種類型的點,SVM生成(N-1)維的超平面將這些點分成2組。
假設你有一些可以線性分離的紙張中的兩種類型的點。SVM將找到一條直線,將這些點分成兩種類型,並盡可能遠離所有這些點。
在規模上,使用SVM解決的一些特大的問題(包括適當修改的實現)是:廣告、人類基因剪接位點識別、基於圖像的性別檢測,大規模圖像分類...
6.集成方法:集成方法是構建一組分類器的學習演算法,然後通過對其預測進行加權投票來對新的數據點進行分類。原始的集成方法是貝葉斯平均法,但更新的演算法包括糾錯輸出編碼、bagging和boosting。
那麼集成方法如何工作,為什麼它們優於單個模型?
均衡偏差:如果你均衡了大量的傾向民主黨的投票和大量傾向共和黨的投票,你總會得到一個不那麼偏頗的結果。
降低方差:集合大量模型的參考結果,噪音會小於單個模型的單個結果。在金融領域,這被稱為投資分散原則(diversification)——一個混搭很多種股票的投資組合,比單獨的股票更少變故。
不太可能過度擬合:如果您有單個模型不完全擬合,您以簡單的方式(平均,加權平均,邏輯回歸)結合每個模型建模,那麼一般不會發生過擬合。
無監督學習
7. 聚類演算法:聚類是對一組對象進行分組的任務,使得同一組(集群)中的對象彼此之間比其他組中的對象更相似。
每個聚類演算法是不同的,比如:
基於Centroid的演算法
基於連接的演算法
基於密度的演算法
概率
降維
神經網路/深度學習
8. 主成分分析: PCA是使用正交變換將可能相關變數的觀察值轉換為主成分的線性不相關變數值的一組統計過程。
PCA的一些應用包括壓縮、簡化數據、便於學習、可視化。請注意,領域知識在選擇是否繼續使用PCA時非常重要。數據嘈雜的情況(PCA的所有組件都有很大差異)的情況不適用。
9.奇異值分解:在線性代數中,SVD是真正復雜矩陣的因式分解。對於給定的m * n矩陣M,存在分解,使得M =UΣV,其中U和V是酉矩陣,Σ是對角矩陣。
PCA實際上是SVD的簡單應用。在計算機視覺技術中,第一個人臉識別演算法使用PCA和SVD,以將面部表示為「特徵臉」的線性組合,進行降維,然後通過簡單的方法將面部匹配到身份;雖然這種方法更復雜,但仍然依賴於類似的技術。
10.獨立成分分析: ICA是一種統計技術,用於揭示隨機變數、測量或信號集合的隱藏因素。ICA定義了觀察到的多變數數據的生成模型,通常將其作為大型樣本資料庫。
在模型中,假設數據變數是一些未知潛在變數的線性混合,混合系統也是未知的。潛變數被假定為非高斯和相互獨立的,它們被稱為觀測數據的獨立成分。
ICA與PCA相關,但它是一種更強大的技術,能夠在這些經典方法完全失敗時找到潛在的源因素。其應用包括數字圖像、文檔資料庫、經濟指標和心理測量。
4. 用libsvm做時間序列預測,為什麼訓練數據越少越准確
樓主的說法似乎不太對
最後,如果像預測股票價格一切都那樣簡單,那麼就不需要這么多機器學習和金融專家才能進行高頻交易。
5. 求支持向量機預測股票價格的MATLAB程序,謝謝!
這個,可多啊,我有
6. 怎麼用機器學習模型做時間序列預測
SVM理論是在統計學習理論的基礎上發展起來的,由於統計學習理論和SVM方法對有限樣本情況下模式識別中的一些根本性的問題進行了系統的理論研究,很大程度上解決了以往的機器學習中模型的選擇與過學習問題、非線性和維數災難、局部極小點問題等。應用SVM進行回歸預測的步驟具體如下:
1)實驗規模的選取,決定訓練集的數量、測試集的數量,以及兩者的比例;2)預測參數的選取;3)對實驗數據進行規范化處理;4)核函數的確定;5)核函數參數的確定。其中參數的選擇對SVM的性能來說是十分重要的,對於本文的核函數使用RBF核函數,對於RBF核函數,SVM參數包括折衷參數C、核寬度C和不敏感參數E。目前SVM方法的參數、核函數的參數選擇,在國際上都還沒有形成統一的模式,也就是說最優SVM演算法參數選擇還只能是憑借經驗、實驗對比、大范圍的搜尋和交叉檢驗等進行尋優。實際應用中經常為了方便,主觀設定一個較小的正數作為E的取值,本文首先在C和C的一定范圍內取多個值來訓練,定下各個參數取值的大概范圍,然後利用留一法來具體選定參數值
股價時間序列的SVM模型最高階確定
股價數據是一個時間序列,從時間序列的特徵分析得知,股價具有時滯、後效性,當天的股價不僅還與當天各種特徵有關,還與前幾天的股價及特徵相關,所以有必要把前幾天的股價和特徵作為自變數來考慮。最高階確定基本原理是從低階開始對系統建模,然後逐步增加模型的階數,並用F檢驗對這些模型進行判別來確定最高階n,這樣才能更客觀反映股票價格的時滯特性。具體操作步驟如下:假定一多輸入單輸出回歸模型有N個樣本、一個因變數(股價)、m- 1個自變數(特徵),由低階到高階遞推地採用SVM模型去擬合系統(這兒的拓階就是把昨天股價當做自變數,對特徵同時拓階),並依次對相鄰兩個SVM模型採用F檢驗的方法判斷模型階次增加是否合適[ 7]。對相鄰兩模型SVM ( n)和SVM ( n+ 1)而言,有統計量Fi為:Fi=QSVR (n)- QSVR( n+1)QSVR (n)1N - m n - (m -1)mi =1,2,,, n(1)它服從自由度分別為m和(N - m n - (m -1) )的F分布,其中QSVR (n)和QSVR( n+1)分別為SVR ( n)和QSVR( n+1)的剩餘離差平方和,若Fi< F(?,m, N-m n- (m-1) ),則SVM (n )模型是合適的;反之,繼續拓展階數。
前向浮動特徵篩選
經過上述模型最高階數的確定後,雖然確定了階數為n的SVM模型,即n個特徵,但其中某些特徵對模型的預測精度有不利影響,本文採用基於SVM和留一法的前向浮動特徵特徵篩選演算法選擇對提高預測精度有利影響的特徵。令B= {xj: j=1,2,,, k}表示特徵全集, Am表示由B中的m個特徵組成的特徵子集,評價函數MSE (Am)和MSE (Ai) i =1,2,,, m -1的值都已知。本文採用的前向浮動特徵篩選演算法如下[9]:1)設置m =0, A0為空集,利用前向特徵篩選方法尋找兩個特徵組成特徵子集Am(m =2);2)使用前向特徵篩選方法從未選擇的特徵子集(B -Am)中選擇特徵xm +1,得到子集Am+1;3)如果迭代次數達到預設值則退出,否則執行4);4)選擇特徵子集Am+1中最不重要的特徵。如果xm+1是最不重要的特徵即對任意jXm +1, J (Am +1- xm+1)FJ(Am +1- xj)成立,那麼令m = m +1,返回2) (由於xm+1是最不重要的特徵,所以無需從Am中排除原有的特徵);如果最不重要的特徵是xr( r =1,2,,, m )且MSE (Am+1- xr) < MSE (Am)成立,排除xr,令A'm= Am+1- xr;如果m =2,設置Am= A'm,J (Am) = J (A'm), ,返回2),否則轉向步驟5);5)在特徵子集A'm中尋找最不重要的特徵xs,如果MSE (A'm- xs)EM SE (Am-1),那麼設置Am= A'm, MSE (Am)= MSE (A'm),返回2);如果M SE (A'm- xs) < M SE (Am -1),那麼A'm從中排除xs,得到A'm-1= Am- xs,令m = m -1;如果m =2,設置Am= A'm, MSE (Am) = MSE (A'm)返回2),否則轉向5)。最後選擇的特徵用於後續建模預測。
預測評價指標及參比模型
訓練結果評估階段是對訓練得出的模型推廣能力進行驗證,所謂推廣能力是指經訓練後的模型對未在訓練集中出現的樣本做出正確反應的能力。為了評價本文模型的優劣,選擇BPANN、多變數自回歸時間序列模型( CAR)和沒有進行拓階和特徵篩選的SVM作為參比模型。採用均方誤差(mean squared error, MSE)和平均絕對誤差百分率(mean ab-solute percentage error, MAPE)作為評價指標。MSE和MAP定義如下:M SE=E(yi- y^i)2n( 2)MAPE=E| yi- y^i| /yin( 3)其中yi為真值, y^i為預測值, n為預測樣本數。如果得出M SE, MAPE結果較小,則說明該評估模型的推廣能力強,或泛化能力強,否則就說明其推廣能力較差
7. SVM回歸預測程序問題,求幫助
《MATLAB神經網路30個案例分析》裡面有一個用SVM做股票開盤價分析的程序
他裡面有這么幾句
ts = sh(2:m,1);
tsx = sh(1:m-1,:);
%歸一化 。。。
model = svmtrain(TS,TSX,cmd);
[predict,mse, decision_values] = svmpredict(TS,TSX,model);
他這個不是在用訓練集預測自己嗎?這樣有什麼意義?
另外我的時間序列每次只有一個數據,預測的時候是不是就只有一個特徵?
謝謝!!
8. 支持向量機能用到對 股票估值上嗎
支持向量機SVM(Support Vector Machine)作為一種可訓練的機器學習方法,依靠小樣本學習後的模型參數進行導航星提取,可以得到分布均勻且恆星數量大為減少的導航星表 基本情況 Vapnik等人在多年研究統計學習理論基礎上對線性分類器提出了另一種設計最佳准則。其原理也從線svm 產品
性可分說起,然後擴展到線性不可分的情況。甚至擴展到使用非線性函數中去,這種分類器被稱為支持向量機(Support Vector Machine,簡稱SVM)。支持向量機的提出有很深的理論背景。 支持向量機方法是在近年來提出的一種新方法。 SVM的主要思想可以概括為兩點: (1) 它是針對線性可分情況進行分析,對於線性不可分的情況,通過使用非線性映射演算法將低維輸入空間線性不可分的樣本轉化為高維特徵空間使其線性可分,從而 使得高維特徵空間採用線性演算法對樣本的非線性特徵進行線性分析成為可能;(2) 它基於結構風險最小化理論之上在特徵空間中建構最優分割超平面,使得學習器得到全svm 系列產品
局最優化,並且在整個樣本空間的期望風險以某個概率滿足一定上界。 在學習這種方法時,首先要弄清楚這種方法考慮問題的特點,這就要從線性可分的最簡單情況討論起,在沒有弄懂其原理之前,不要急於學習線性不可分等較復雜的情況,支持向量機在設計時,需要用到條件極值問題的求解,因此需用拉格朗日乘子理論,但對多數人來說,以前學到的或常用的是約束條件為等式表示的方式,但在此要用到以不等式作為必須滿足的條件,此時只要了解拉格朗日理論的有關結論就行。
9. 機器學習有哪些演算法
樸素貝葉斯分類器演算法是最受歡迎的學習方法之一,按照相似性分類,用流行的貝葉斯概率定理來建立機器學習模型,特別是用於疾病預測和文檔分類。 它是基於貝葉斯概率定理的單詞的內容的主觀分析的簡單分類。
什麼時候使用機器學習演算法 - 樸素貝葉斯分類器?
(1)如果您有一個中等或大的訓練數據集。
(2)如果實例具有幾個屬性。
(3)給定分類參數,描述實例的屬性應該是條件獨立的。
A.樸素貝葉斯分類器的應用
(1)這些機器學習演算法有助於在不確定性下作出決策,並幫助您改善溝通,因為他們提供了決策情況的可視化表示。
(2)決策樹機器學習演算法幫助數據科學家捕獲這樣的想法:如果採取了不同的決策,那麼情境或模型的操作性質將如何劇烈變化。
(3)決策樹演算法通過允許數據科學家遍歷前向和後向計算路徑來幫助做出最佳決策。
C.何時使用決策樹機器學習演算法
(1)決策樹對錯誤是魯棒的,並且如果訓練數據包含錯誤,則決策樹演算法將最適合於解決這樣的問題。
(2)決策樹最適合於實例由屬性值對表示的問題。
(3)如果訓練數據具有缺失值,則可以使用決策樹,因為它們可以通過查看其他列中的數據來很好地處理丟失的值。
(4)當目標函數具有離散輸出值時,決策樹是最適合的。
D.決策樹的優點
(1)決策樹是非常本能的,可以向任何人輕松解釋。來自非技術背景的人,也可以解釋從決策樹繪制的假設,因為他們是不言自明的。
(2)當使用決策樹機器學習演算法時,數據類型不是約束,因為它們可以處理分類和數值變數。
(3)決策樹機器學習演算法不需要對數據中的線性進行任何假設,因此可以在參數非線性相關的情況下使用。這些機器學習演算法不對分類器結構和空間分布做出任何假設。
(4)這些演算法在數據探索中是有用的。決策樹隱式執行特徵選擇,這在預測分析中非常重要。當決策樹適合於訓練數據集時,在其上分割決策樹的頂部的節點被認為是給定數據集內的重要變數,並且默認情況下完成特徵選擇。
(5)決策樹有助於節省數據准備時間,因為它們對缺失值和異常值不敏感。缺少值不會阻止您拆分構建決策樹的數據。離群值也不會影響決策樹,因為基於分裂范圍內的一些樣本而不是准確的絕對值發生數據分裂。
E.決策樹的缺點
(1)樹中決策的數量越多,任何預期結果的准確性越小。
(2)決策樹機器學習演算法的主要缺點是結果可能基於預期。當實時做出決策時,收益和產生的結果可能與預期或計劃不同。有機會,這可能導致不現實的決策樹導致錯誤的決策。任何不合理的期望可能導致決策樹分析中的重大錯誤和缺陷,因為並不總是可能計劃從決策可能產生的所有可能性。
(3)決策樹不適合連續變數,並導致不穩定性和分類高原。
(4)與其他決策模型相比,決策樹很容易使用,但是創建包含幾個分支的大決策樹是一個復雜和耗時的任務。
(5)決策樹機器學習演算法一次只考慮一個屬性,並且可能不是最適合於決策空間中的實際數據。
(6)具有多個分支的大尺寸決策樹是不可理解的,並且造成若干呈現困難。
F.決策樹機器學習演算法的應用
(1)決策樹是流行的機器學習演算法之一,它在財務中對期權定價有很大的用處。
(2)遙感是基於決策樹的模式識別的應用領域。
(3)銀行使用決策樹演算法按貸款申請人違約付款的概率對其進行分類。
(4)Gerber產品公司,一個流行的嬰兒產品公司,使用決策樹機器學習演算法來決定他們是否應繼續使用塑料PVC(聚氯乙烯)在他們的產品。
(5)Rush大學醫學中心開發了一個名為Guardian的工具,它使用決策樹機器學習演算法來識別有風險的患者和疾病趨勢。
Python語言中的數據科學庫實現決策樹機器學習演算法是 - SciPy和Sci-Kit學習。
R語言中的數據科學庫實現決策樹機器學習演算法是插入符號。
3.7 隨機森林機器學習演算法
讓我們繼續我們在決策樹中使用的同樣的例子,來解釋隨機森林機器學習演算法如何工作。提利昂是您的餐廳偏好的決策樹。然而,提利昂作為一個人並不總是准確地推廣你的餐廳偏好。要獲得更准確的餐廳推薦,你問一對夫婦的朋友,並決定訪問餐廳R,如果大多數人說你會喜歡它。而不是只是問Tyrion,你想問問Jon Snow,Sandor,Bronn和Bran誰投票決定你是否喜歡餐廳R或不。這意味著您已經構建了決策樹的合奏分類器 - 也稱為森林。
你不想讓所有的朋友給你相同的答案 - 所以你提供每個朋友略有不同的數據。你也不確定你的餐廳偏好,是在一個困境。你告訴提利昂你喜歡開頂屋頂餐廳,但也許,只是因為它是在夏天,當你訪問的餐廳,你可能已經喜歡它。在寒冷的冬天,你可能不是餐廳的粉絲。因此,所有的朋友不應該利用你喜歡打開的屋頂餐廳的數據點,以提出他們的建議您的餐廳偏好。
通過為您的朋友提供略微不同的餐廳偏好數據,您可以讓您的朋友在不同時間向您詢問不同的問題。在這種情況下,只是稍微改變你的餐廳偏好,你是注入隨機性在模型級別(不同於決策樹情況下的數據級別的隨機性)。您的朋友群現在形成了您的餐廳偏好的隨機森林。
隨機森林是一種機器學習演算法,它使用裝袋方法來創建一堆隨機數據子集的決策樹。模型在數據集的隨機樣本上進行多次訓練,以從隨機森林演算法中獲得良好的預測性能。在該整體學習方法中,將隨機森林中所有決策樹的輸出結合起來進行最終預測。隨機森林演算法的最終預測通過輪詢每個決策樹的結果或者僅僅通過使用在決策樹中出現最多次的預測來導出。
例如,在上面的例子 - 如果5個朋友決定你會喜歡餐廳R,但只有2個朋友決定你不會喜歡的餐廳,然後最後的預測是,你會喜歡餐廳R多數總是勝利。
A.為什麼使用隨機森林機器學習演算法?
(1)有很多好的開源,在Python和R中可用的演算法的自由實現。
(2)它在缺少數據時保持准確性,並且還能抵抗異常值。
(3)簡單的使用作為基本的隨機森林演算法可以實現只用幾行代碼。
(4)隨機森林機器學習演算法幫助數據科學家節省數據准備時間,因為它們不需要任何輸入准備,並且能夠處理數字,二進制和分類特徵,而無需縮放,變換或修改。
(5)隱式特徵選擇,因為它給出了什麼變數在分類中是重要的估計。
B.使用隨機森林機器學習演算法的優點
(1)與決策樹機器學習演算法不同,過擬合對隨機森林不是一個問題。沒有必要修剪隨機森林。
(2)這些演算法很快,但不是在所有情況下。隨機森林演算法當在具有100個變數的數據集的800MHz機器上運行時,並且50,000個案例在11分鍾內產生100個決策樹。
(3)隨機森林是用於各種分類和回歸任務的最有效和通用的機器學習演算法之一,因為它們對雜訊更加魯棒。
(4)很難建立一個壞的隨機森林。在隨機森林機器學習演算法的實現中,容易確定使用哪些參數,因為它們對用於運行演算法的參數不敏感。一個人可以輕松地建立一個體面的模型沒有太多的調整
(5)隨機森林機器學習演算法可以並行生長。
(6)此演算法在大型資料庫上高效運行。
(7)具有較高的分類精度。
C.使用隨機森林機器學習演算法的缺點
他們可能很容易使用,但從理論上分析它們是很困難的。
隨機森林中大量的決策樹可以減慢演算法進行實時預測。
如果數據由具有不同級別數量的分類變數組成,則演算法會偏好具有更多級別的那些屬性。 在這種情況下,可變重要性分數似乎不可靠。
當使用RandomForest演算法進行回歸任務時,它不會超出訓練數據中響應值的范圍。
D.隨機森林機器學習演算法的應用
(1)隨機森林演算法被銀行用來預測貸款申請人是否可能是高風險。
(2)它們用於汽車工業中以預測機械部件的故障或故障。
(3)這些演算法用於醫療保健行業以預測患者是否可能發展成慢性疾病。
(4)它們還可用於回歸任務,如預測社交媒體份額和績效分數的平均數。
(5)最近,該演算法也已經被用於預測語音識別軟體中的模式並對圖像和文本進行分類。
Python語言中的數據科學庫實現隨機森林機器學習演算法是Sci-Kit學習。
R語言的數據科學庫實現隨機森林機器學習演算法randomForest。