1. 請問圖里的公式具體是什麼股票估值模型叫什麼
請問圖里的公式具體是什麼股票估值模型?
這是計算年金現值公式,包括終值的現值。
經濟學告訴你們,資金有時間價值。未來公司的每年利潤,預計利率,假設t年可回收投資,就可折算成現值。可以用來判斷投資的效益,股票、國債的價值等。幫助人們決策是否值得投資。
2. 如何編寫MATLAB回測模型
丁鵬博士的書中,有一節中有一個小例子講解matlab回測的
3. 如何建立一個股票量化交易模型並模擬
用文化財經軟體,編寫程序化交易系統,具體參考官網教程
4. python的量化代碼怎麼用到股市中
2010 ~ 2017 滬深A股各行業量化分析
在開始各行業的量化分析之前,我們需要先弄清楚兩個問題:
第一,A股市場上都有哪些行業;
第二,各行業自2010年以來的營收、凈利潤增速表現如何?
第一個問題
很好回答,我們使用JQData提供的獲取行業成分股的方法,輸入get_instries(name='sw_l1')
得到申萬一級行業分類結果如下:它們分別是:【農林牧漁、採掘、化工、鋼鐵、有色金屬、電子、家用電器、食品飲料、紡織服裝、輕工製造、醫葯生物、公用事業、交通運輸、房地產、商業貿易、休閑服務、綜合、建築材料、建築裝飾、電器設備、國防軍工、計算機、傳媒、通信、銀行、非銀金融、汽車、機械設備】共計28個行業。
第二個問題
要知道各行業自2010年以來的營收、凈利潤增速表現,我們首先需要知道各行業在各個年度都有哪些成分股,然後加總該行業在該年度各成分股的總營收和凈利潤,就能得到整個行業在該年度的總營收和總利潤了。這部分數據JQData也為我們提供了方便的介面:通過調用get_instry_stocks(instry_code=『行業編碼』, date=『統計日期』),獲取申萬一級行業指定日期下的行業成分股列表,然後再調用查詢財務的數據介面:get_fundamentals(query_object=『query_object』, statDate=year)來獲取各個成分股在對應年度的總營收和凈利潤,最後通過加總得到整個行業的總營收和總利潤。這里為了避免非經常性損益的影響,我們對凈利潤指標最終選取的扣除非經常性損益的凈利潤數據。
我們已經獲取到想要的行業數據了。接下來,我們需要進一步分析,這些行業都有什麼樣的增長特徵。
我們發現,在28個申萬一級行業中,有18個行業自2010年以來在總營收方面保持了持續穩定的增長。它們分別是:【農林牧漁,電子,食品飲料,紡織服裝,輕工製造,醫葯生物,公用事業,交通運輸,房地產,休閑服務,建築裝飾,電氣設備,國防軍工,計算機,傳媒,通信,銀行,汽車】;其他行業在該時間范圍內出現了不同程度的負增長。
那麼,自2010年以來凈利潤保持持續增長的行業又會是哪些呢?結果是只有5個行業保持了基業長青,他們分別是醫葯生物,建築裝飾,電氣設備,銀行和汽車。(註:由於申萬行業在2014年發生過一次大的調整,建築裝飾,電氣設備,銀行和汽車實際從2014年才開始統計。)
從上面的分析結果可以看到,真正能夠保持持續穩定增長的行業並不多,如果以扣非凈利潤為標准,那麼只有醫葯生物,建築裝飾,電氣設備,銀行和汽車這五個行業可以稱之為優質行業,實際投資中,就可以只從這幾個行業中去投資。這樣做的目的是,一方面,能夠從行業大格局層面避免行業下行的風險,繞開一個可能出現負增長的的行業,從而降低投資的風險;另一方面,也大大縮短了我們的投資范圍,讓投資者能夠專注於從真正好的行業去挑選公司進行投資。
「2010-2017」投資於優質行業龍頭的收益表現
選好行業之後,下面進入選公司環節。我們知道,即便是一個好的行業也仍然存在表現不好的公司,那麼什麼是好的公司呢,本文試圖從營業收入規模和利潤規模和來考察以上五個基業長青的行業,從它們中去篩選公司作為投資標的。
3.1按營業收入規模構建的行業龍頭投資組合
首先,我們按照營業收入規模,篩選出以上5個行業【醫葯生物,建築裝飾,電氣設備,銀行和汽車】從2010年至今的行業龍頭如下表所示:
通過以上行業分析和投資組合的歷史回測可以看到:
先選行業,再選公司,即使是從2015年股災期間開始投資,至2018年5月1號,仍然能夠獲得相對理想的收益,可以說,紅杉資本的賽道投資法則對於一般投資者還是比較靠譜的。
在構建行業龍頭投資組合時,凈利潤指標顯著優於營業收入指標,獲得的投資收益能夠更大的跑贏全市場收益率
市場是不斷波動的,如果一個投資者從股災期間開始投資,那麼即使他買入了上述優質行業的龍頭組合,在近3年也只能獲得12%左右的累計收益;而如果從2016年5月3日開始投資,那麼至2018年5月2日,2年時間就能獲得超過50%以上的收益了。所以,在投資過程中選擇時機也非常重要。
出自:JoinQuant 聚寬數據 JQData
5. 如何建立一個股票量化交易模型並模擬
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。
6. 股票的預測模型有哪些
Miller and Modigliani(1961)四個定價模式
1.凈現金流量折現法
2.投資機會折現法
3.股利折現法
4.盈餘折現法
市場實務(本益比、市價凈值比等)倍數還原法
自由現金流量法(Free Cash Flow Method)
市場效率假說
CAPM模型與APT模型等
你是指上述之評價模式嗎
7. 請問高手這是什麼選股模型,具體些。公式或源代碼是什麼高分多謝。重謝100財富
沒什麼源代碼。屬於追高的一種。國外的統計數據是創新高的股票未來三個月再創新高的概率是65%。
形態上,放量突破前期高點。將前面的套牢盤全部吃掉。之後回踩前期高點平台。然後迎來新一波主升浪。當然有題材的配合會更好,沒有也可以。
但是這中選股方式要考慮大盤。大盤不好的時候不可取。同時要考慮股本和股價。股價太高上升的空間自然就小。股本越大越不容易拉升。
有個例子,今年的美欣達。失敗例子,新海股份。
朋友,你找到你想要的東西了。
8. 如何用Arma模型做股票估計
時間序列分析是經濟領域應用研究最廣泛的工具之一,它用恰當的模型描述歷史數據隨時間變化的規律,並分析預測變數值。ARMA模型是一種最常見的重要時間序列模型,被廣泛應用到經濟領域預測中。給出ARMA模型的模式和實現方法,然後結合具體股票數據揭示股票變換的規律性,並運用ARMA模型對股票價格進行預測。
選取長江證券股票具體數據進行實證分析
1.數據選取。
由於時間序列模型往往需要大樣本,所以這里我選取長江證券從09/03/20到09/06/19日開盤價,前後約三個月,共計60個樣本,基本滿足ARMA建模要求。
數據來源:大智慧股票分析軟體導出的數據(股價趨勢圖如下)
從上圖可看出有一定的趨勢走向,應為非平穩過程,對其取對數lnS,再觀察其平穩性。
2.數據平穩性分析。
先用EVIEWS生成新序列lnS並用ADF檢驗其平穩性。
(1)ADF平穩性檢驗,首先直接對數據平穩檢驗,沒通過檢驗,即不平穩。
可以看出lnS沒有通過檢驗,也是一個非平穩過程,那麼我們想到要對其進行差分。
(2)一階差分後平穩性檢驗,ADF檢驗結果如下,通過1%的顯著檢驗,即數據一階差分後平穩。
可以看出差分後,明顯看出ADF Test Statistic 為-5.978381絕對值是大於1%的顯著水平下的臨界值的,所以可以通過平穩性檢驗。
3.確定適用模型,並定階。可以先生成原始數據的一階差分數據dls,並觀測其相關系數AC和偏自相關系數PAC,以確定其是為AR,MA或者是ARMA模型。
(1)先觀測一階差分數據dls的AC和PAC圖。經檢驗可以看出AC和PAC皆沒有明顯的截尾性,嘗試用ARMA模型,具體的滯後項p,q值還需用AIC和SC具體確定。
(2)嘗試不同模型,根據AIC和SC最小化的原理確定模型ARMA(p,q)。經多輪比較不同ARMA(p,q)模型,可以得出相對應AIC 和 SC的值。
經過多次比較最終發現ARMA(1,1)過程的AIC和SC都是最小的。最終選取ARIMA(1,1,1)模型作為預測模型。並得出此模型的具體表達式為:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的檢驗。選取ARIMA(1,1,1)模型,定階和做參數估計後,還應對其殘差序列進行檢驗,對其殘差的AC和Q統計檢驗發現其殘差自相關基本在0附近,且Q值基本通過檢驗,殘差不明顯存在相關,即可認為殘差中沒有包含太多信息,模型擬合基本符合。
5.股價預測。利用以上得出的模型,然後對長江證券6月22日、23日、24日股價預測得出預測值並與實際值比較如下。
有一定的誤差,但相比前期的漲跌趨勢基本吻合,這里出現第一個誤差超出預想的是因為6月22日正好是禮拜一,波動較大,這里正驗證了有研究文章用GARCH方法得出的禮拜一波動大的結果。除了禮拜一的誤差大點,其他日期的誤差皆在接受范圍內。
綜上所述,ARMA模型較好的解決了非平穩時間序列的建模問題,可以在時間序列的預測方面有很好的表現。藉助EViews軟體,可以很方便地將ARMA模型應用於金融等時間序列問題的研究和預測方面,為決策者提供決策指導和幫助。當然,由於金融時間序列的復雜性,很好的模擬還需要更進一步的研究和探討。在後期,將繼續在這方面做出自己的摸索。
9. 股票回測是什麼意思
指股票上漲一定幅度之後回落一定幅度,這個不是回測,而是回撤。回測指的是一個投資策略,在過去幾年的歷史收益表現,常用到年化收益、夏普比率、最大回撤、阿爾法、貝塔值來評估回測結果的好壞,回測結果越好,那麼未來這個策略相對來說,賺錢的概率更高。像果仁網,就可以實現從選股到歷史數據回測。