股指期貨量化分析就是通過一定的「模型」對股指期貨的歷史數據進行回溯測試分析,從而應用到未來的走勢進行預測,目標就是在盈利概率高的情況下進行交易以期獲得在風險可控情況下持久穩定的盈利。
量化分析就是數據分析,參考 http://..com/question/2122011.html
對整個市場的預測是不容易的,相當於對(市場上交易的所有的)人的行為進行預測,或者說預測未來。目前主流的股指期貨(包括其他商品期貨)主要通過參數過濾來生成交易信號,如最簡單的,MACD金叉做多開倉,死叉做空平倉。策略大致分兩種,1)趨勢跟蹤,即突破追漲殺跌;2)均值回歸,即高拋低吸。頻率從分筆數據到日線,從每幾天交易一次到每天交易幾十次都有。
實現手段基本都採用程序化交易,排除人為干擾。或自己寫程序,或採用第三方軟體(廣告就不做了)。
Ⅱ 什麼是期貨量化交易風險大嗎
量化投資理論是藉助現代統計學和數學的方法,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,用數量模型驗證及固化這些規律和策略,然後嚴格執行已固化的策略來指導投資,以求獲得可持續的、穩定且高於平均的超額回報
量化從一開始也不是作為定性的對立面而提出的方法,它是將定性分析中的技術分析策略用模型固化,替代過程中可以用電腦進行的部分並將其效用極大優化
量化交易策略幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。風險也是有的,好好控制就行。華盛天成量化交易做的還不錯,很有實力,推薦
Ⅲ 量化投資,如何量化呢
量化投資技術幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。
1·量化選股
量化選股就是採用數量的方法判斷某個公司是否值得買入的行為。根據某個方法,如果該公司滿足了該方法的條件,則放入股票池,如果不滿足,則從股票池中剔除。量化選股的方法有很多種,總的來說,可以分為公司估值法、趨勢法和資金法三大類
2·量化擇時
股市的可預測性問題與有效市場假說密切相關。如果有效市場理論或有效市場假說成立,股票價格充分反映了所有相關的信息,價格變化服從隨機遊走,股票價格的預測則毫無意義。眾多的研究發現我國股市的指數收益中,存在經典線性相關之外的非線性相關,從而拒絕了隨機遊走的假設,指出股價的波動不是完全隨機的,它貌似隨機、雜亂,但在其復雜表面的背後,卻隱藏著確定性的機制,因此存在可預測成分。
3·股指期貨
股指期貨套利是指利用股指期貨市場存在的不合理價格,同時參與股指期貨與股票現貨市場交易,或者同時進行不同期限,不同(但相近)類別股票指數合約交易,以賺取差價的行為,股指期貨套利主要分為期現套利和跨期套利兩種。股指期貨套利的研究主要包括現貨構建、套利定價、保證金管理、沖擊成本、成分股調整等內容。
4·商品期貨
商品期貨套利盈利的邏輯原理是基於以下幾個方面 :
(1)相關商品在不同地點、不同時間對應都有一個合理的價格差價。
(2)由於價格的波動性,價格差價經常出現不合理。
(3)不合理必然要回到合理。
(4)不合理回到合理的這部分價格區間就是盈利區間。
5·統計套利
有別於無風險套利,統計套利是利用證券價格的歷史統計規律進行套利,是一種風險套利,其風險在於這種歷史統計規律在未來一段時間內是否繼續存在。統計套利在方法上可以分為兩類,一類是利用股票的收益率序列建模,目標是在組合的β值等於零的前提下實現alpha 收益,我們稱之為β中性策略;另一類是利用股票的價格序列的協整關系建模,我們稱之為協整策略。
6·期權套利
期權套利交易是指同時買進賣出同一相關期貨但不同敲定價格或不同到期月份的看漲或看跌期權合約,希望在日後對沖交易部位或履約時獲利的交易。期權套利的交易策略和方式多種多樣,是多種相關期權交易的組合,具體包括:水平套利、垂直套利、轉換套利、反向轉換套利、跨式套利、蝶式套利、飛鷹式套利等。
7·演算法交易
演算法交易又被稱為自動交易、黑盒交易或者機器交易,它指的是通過使用計算機程序來發出交易指令。在交易中,程序可以決定的范圍包括交易時間的選擇、交易的價格、甚至可以包括最後需要成交的證券數量。根據各個演算法交易中演算法的主動程度不同,可以把不同演算法交易分為被動型演算法交易、主動型演算法交易、綜合型演算法交易三大類。
8·資產配置
資產配置是指資產類別選擇,投資組合中各類資產的適當配置以及對這些混合資產進行實時管理。量化投資管理將傳統投資組合理論與量化分析技術的結合,極大地豐富了資產配置的內涵,形成了現代資產配置理論的基本框架。
它突破了傳統積極型投資和指數型投資的局限,將投資方法建立在對各種資產類股票公開數據的統計分析上,通過比較不同資產類的統計特徵,建立數學模型,進而確定組合資產的配置目標和分配比例。
Ⅳ 股票市場中什麼 是量化投資!
微量網:量化投資在海外的發展已有30多年的歷史,其投資業績穩定,市場規模和份額不斷擴大、得到了越來越多投資者認可。
量化投資區別於定性投資的鮮明特徵就是模型,對於量化投資中模型與人的關系,大家也比較關心。我打個比方來說明這種關系,我們先看一看醫生治病,中醫與西醫的診療方法不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,定性程度上大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。
醫生治療病人的疾病,投資者治療市場的疾病,市場的疾病是什麼?就是錯誤定價和估值,沒病或病得比較輕,市場是有效或弱有效的;病得越嚴重,市場越無效。投資者用資金投資於低估的證券,直到把它的價格抬升到合理的價格水平上。
但是,定性投資和定量投資的具體做法有些差異,這些差異如同中醫和西醫的差異,定性投資更像中醫,更多地依靠經驗和感覺判斷病在哪裡;定量投資更像是西醫,依靠模型判斷,模型對於定量投資基金經理的作用就像CT機對於醫生的作用。在每一天的投資運作之前,我會先用模型對整個市場進行一次全面的檢查和掃描,然後根據檢查和掃描結果做出投資決策。
量化投資技術幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。
Ⅳ 量化分析的量化投資策略
量化投資技術幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。
1·量化選股
量化選股就是採用數量的方法判斷某個公司是否值得買入的行為。根據某個方法,如果該公司滿足了該方法的條件,則放入股票池,如果不滿足,則從股票池中剔除。量化選股的方法有很多種,總的來說,可以分為公司估值法、趨勢法和資金法三大類
2·量化擇時
股市的可預測性問題與有效市場假說密切相關。如果有效市場理論或有效市場假說成立,股票價格充分反映了所有相關的信息,價格變化服從隨機遊走,股票價格的預測則毫無意義。眾多的研究發現我國股市的指數收益中,存在經典線性相關之外的非線性相關,從而拒絕了隨機遊走的假設,指出股價的波動不是完全隨機的,它貌似隨機、雜亂,但在其復雜表面的背後,卻隱藏著確定性的機制,因此存在可預測成分。
3·股指期貨套利
股指期貨套利是指利用股指期貨市場存在的不合理價格,同時參與股指期貨與股票現貨市場交易,或者同時進行不同期限,不同(但相近)類別股票指數合約交易,以賺取差價的行為,股指期貨套利主要分為期現套利和跨期套利兩種。股指期貨套利的研究主要包括現貨構建、套利定價、保證金管理、沖擊成本、成分股調整等內容。
4·商品期貨套利
商品期貨套利盈利的邏輯原理是基於以下幾個方面 :(1)相關商品在不同地點、不同時間對應都有一個合理的價格差價。(2)由於價格的波動性,價格差價經常出現不合理。(3)不合理必然要回到合理。(4)不合理回到合理的這部分價格區間就是盈利區間。
5·統計套利
有別於無風險套利,統計套利是利用證券價格的歷史統計規律進行套利,是一種風險套利,其風險在於這種歷史統計規律在未來一段時間內是否繼續存在。統計套利在方法上可以分為兩類,一類是利用股票的收益率序列建模,目標是在組合的β值等於零的前提下實現alpha 收益,我們稱之為β中性策略;另一類是利用股票的價格序列的協整關系建模,我們稱之為協整策略。
6·期權套利
期權套利交易是指同時買進賣出同一相關期貨但不同敲定價格或不同到期月份的看漲或看跌期權合約,希望在日後對沖交易部位或履約時獲利的交易。期權套利的交易策略和方式多種多樣,是多種相關期權交易的組合,具體包括:水平套利、垂直套利、轉換套利、反向轉換套利、跨式套利、蝶式套利、飛鷹式套利等。
7·演算法交易
演算法交易又被稱為自動交易、黑盒交易或者機器交易,它指的是通過使用計算機程序來發出交易指令。在交易中,程序可以決定的范圍包括交易時間的選擇、交易的價格、甚至可以包括最後需要成交的證券數量。根據各個演算法交易中演算法的主動程度不同,可以把不同演算法交易分為被動型演算法交易、主動型演算法交易、綜合型演算法交易三大類。
8·資產配置
資產配置是指資產類別選擇,投資組合中各類資產的適當配置以及對這些混合資產進行實時管理。量化投資管理將傳統投資組合理論與量化分析技術的結合,極大地豐富了資產配置的內涵,形成了現代資產配置理論的基本框架。它突破了傳統積極型投資和指數型投資的局限,將投資方法建立在對各種資產類股票公開數據的統計分析上,通過比較不同資產類的統計特徵,建立數學模型,進而確定組合資產的配置目標和分配比例。
Ⅵ 什麼是量化投資
量化投資在海外的發展已有30多年的歷史,其投資業績穩定,市場規模和份額不斷擴大、得到了越來越多投資者認可。事實上,互聯網的發展,使得新概念在世界范圍的傳播速度非常快,作為一個概念,量化投資並不算新,國內投資者早有耳聞。但是,真正的量化基金在國內還比較罕見。其實,定量投資和傳統的定性投資本質上的相同的,二者都是基於市場非有效或是弱有效的理論基礎,而投資經理可以通過對個股估值,成長等基本面的分析研究,建立戰勝市場,產生超額收益的組合。不同的是,定性投資管理較依賴對上市公司的調研,以及基金經理個人的經驗及主觀的判斷,而定量投資管理則是「定性思想的量化應用」,更加強調數據。 第一,紀律性,所有的決策都是依據模型做出的。我們有三個模型:一是大類資產配置模型、二是行業模型、三是股票模型。根據大類資產配置決定股票和債券投資比例;按照行業配置模型確定超配或低配的行業;依靠股票模型挑選股票。紀律性首先表現在依靠模型和相信模型,每一天決策之前,首先要運行模型,根據模型的運行結果進行決策,而不是憑感覺。有人問,模型出錯怎麼辦?不可否認,模型可能出錯,就像CT機可能誤診病人一樣。但是,在大概率下,CT機是不會出錯的,所以,醫生沒有拋棄CT機,我的模型在大概率下是不出錯的,所以,我還是相信我的模型。 紀律性的好處很多,可以克服人性的弱點,如貪婪、恐懼、僥幸心理,也可以克服認知偏差,行為金融理論在這方面有許多論述。紀律化的另外一個好處是可跟蹤。定量投資作為一種定性思想的理性應用,客觀地在組合中去體現這樣的組合思想。一個好的投資方法應該是一個「透明的盒子」。我們的每一個決策都是有理有據的,特別是有數據支持的。如果有人質問我,某年某月某一天,你為什麼購買某支股票的化,我會打開系統,系統會顯示出當時被選擇的這只股票與其他的股票相比在成長面上、估值上、動量上、技術指標上的得分情況,這個評價是非常全面的,只有匯總得分比其他得分要高才有說服力。 第二,系統性。具體表現為「三多」。首先表現在多層次,包括在大類資產配置、行業選擇、精選個股三個層次上我們都有模型;其次是多角度,定量投資的核心投資思想包括宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度;再者就是多數據,就是海量數據的處理。人腦處理信息的能力是有限的,當一個資本市場只有100隻股票,這對定性投資基金經理是有優勢的,他可以深刻分析這100家公司。但在一個很大的資本市場,比如有成千上萬只股票的時候,強大的定量投資的信息處理能力能反映它的優勢,能捕捉更多的投資機會,拓展更大的投資機會。 第三,妥善運用套利的思想。定量投資正是在找估值窪地,通過全面、系統性的掃描捕捉錯誤定價、錯誤估值帶來的機會。定性投資經理大部分時間在琢磨哪一個企業是偉大的企業,那個股票是可以翻倍的股票;與定性投資經理不同,定量基金經理大部分精力花在分析哪裡是估值窪地,哪一個品種被低估了,買入低估的,賣出高估的。 第四,靠概率取勝。這表現為兩個方面,一是定量投資不斷的從歷史中挖掘有望在未來重復的歷史規律並且加以利用。二是依靠一組股票取勝,而不是一個或幾個股票取勝。在國內市場的發展潛力首先,相較於海外成熟市場,A股市場的發展歷史較短,投資者隊伍參差不齊,投資理念還不夠成熟,留給主動投資發掘市場非有效性,產生阿爾法的潛力和空間也更大。投資理念多元化,也創造出多元分散的alpha機會。 其次,量化投資的技術和方法在國內幾乎沒有競爭者。中醫治療中醫擅長的疾病、西醫治療西醫擅長的疾病;如果把證券市場看作一個病人的話,每個投資者就是醫生,定性投資者挖掘定性投資的機會,治療定性投資的疾病,定量投資者挖掘定量投資的機會,治療定量投資的疾病。現在證券市場上定性投資者太多了,機會太少,競爭太激烈;量化投資者太少了,機會很多,競爭很少。這給量化投資創造了良好的發展機遇——當其他人都擺西瓜攤的時候,我們擺了一個蘋果攤。 總的看來,量化投資和定性投資的差別真的有如中醫和西醫的差別,互有長短、各有千秋。 由此可見,隨著2010年4月股指期貨的出台,量化投資國內市場發展潛力逐漸顯現,目前已有國泰安金融學院,北京大學匯豐商學院,上海交通大學安泰管理學院投入數百萬開設了專業的量化投資金融實驗室,並開辦了量化投資高級研修班,為國內量化投資的市場發展提供了良好學術和實戰環境。相關基金: 光大量化基金(光大量化核心基金),嘉實量化阿爾法基金,長盛量化基金,中海量化基金。
Ⅶ 什麼是量化投資
定義:是指通過數理統計分析,選擇那些未來回報可能會超越基準的證券進行投資,以期獲取超越指數基金收益的基金。
釋義:區別於普通基金,量化基金主要採用量化投資策略來進行投資組合管理。總的來說,量化基金採用的策略包括:量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、期權套利、演算法交易、資產配置等。對於量化基金的產品設計,雖然量化基金一般都是採用多因素模型對股票進行分析和篩選,但不同的量化基金的側重點是不一樣的,也就是包括投資思路、觀察角度、分析方法在內都是不同的。
在我國證券市場,基本面研究佔主流地位,然而隨著證券市場的不斷發展、證券數目的增加、衍生品的出現等,基金要想戰勝指數的難度也越來越大,量化投資則開始發揮越來越重要的作用,因此我國也涌現出了大批量化基金。
Ⅷ 有沒有什麼好的量化投資策略(做的股指期貨)求大神幫助
作為理財師我要說明一點,量化投資策略做股指期貨的數據現在還沒有,因為股指期貨的數據整理只有最近幾年,畢竟股指期貨的時間比較短,不可能有一個統籌的量化數據產生,這樣的話也就不存在正式的量化投資策略了,所以只能你自己進行統計和數據收集,然後自己做一個,方法如下:
第一、首先可用網路搜索進行股指期貨的數據查詢,我們主要是找到近幾年的走勢數據,另外把數據做出一個均線,同時要加入市場的影響均線,這樣第一步就完成了。
第二、數據收集完畢以後,我們可以在網路繼續搜索【計算器】,好一些的【計算器】現在網路推薦的很多,我們下載一個比較方便一些就可以了,最好是英文版的【計算器】這樣速度會稍微的快一些。
第三、選擇一個感策略的克隆計算公式,這個計算需要我們在數學模型的基礎上進行建立, 具體經濟模型的引入,建議可以在網路文庫裡面收集,這樣會大大的降低你的工作量,提高你的進度。
第四、當一切的數據全部引入以後,我們就可以根據自己的需要修改參數,特別是股指期貨時間比較短,一般可以調整策略一年半左右,不然精確度就會大大的降低,個人比較推薦的是一年計算引入為佳。
第五、編寫量化投資策略的模式的時候,最好可以參考一下復旦大學的經濟模型架構,這樣你導入的數據會比較的精確,這個模型一般在復旦大學經濟學院的官方網站裡面進行查找,所以你需要多費一些精力了。
綜合上面的全部步驟做完以後,那麼我們就可以做出一個量化投資策略的股指期貨策略,當然這個方案不是很全面,作為理財師我自己把握也不大,所以我的經驗,您可以作為一個參考,畢竟現在還沒有人開始製作。
Ⅸ 什麼是量化投資交易策略
一文看懂量化投資策略
閑話基
量化投資在近些年受到越來越多的關注,包括規模、策略、業績。量化投資,是指通過藉助統計學、數學方法,運用計算機從海量歷史數據中,尋找能夠帶來超額收益的多種「大概率」策略,按照策略構建的數量模型嚴格執行投資,力求獲得長期穩定可持續高於平均的超額回報。
跨市場策略涉及外匯兌換、國際期貨交易對沖,交易實現難度大,國內用得少。
由於期貨具有杠桿屬性,這類策略持倉的市值往往很大,有時候甚至超過產品資產總值,導致收益率的波動率是所有量化策略中最大的。在市場出現連續震盪行情時,這樣策略由於杠桿屬性會出現較大的回撤。另外一個對這類策略的一個限制是,目前市場上活躍交易的期貨品種不多,高頻交易很大程度倚重於品種成交量,開平倉時間間隔較短,使得策略容量不大。
Ⅹ 量化投資
沒有你想的書
我多年來都有關注這方面的書 可是也沒有在國內找到
數量化投資是將投資理念及策略通過具體指標、參數的設計,體現到具體的模型中,讓模型對市場進行不帶任何情緒的跟蹤;相對於傳統投資方式來說,具有快速高效、客觀理性、收益與風險平衡和個股與組合平衡等四大特點。量化投資技術幾乎覆蓋了投資的全過程,包括估值與選股、資產配置與組合優化、訂單生成與交易執行、績效評估和風險管理等,在各個環節都有不同的方法及量化模型:
一、估值與選股
估值:對上市公司進行估值是公司基本面分析的重要方法,在「價值投資」的基本邏輯下,可以通過對公司的估值判斷二級市場股票價格的扭曲程度,繼而找出價值被低估或高估的股票,作為投資決策的參考。對上市公司的估值包括相對估值法和絕對估值法,相對估值法主要採用乘數方法,如PE估值法、PB估值法、PS估值法、PEG估值法、PSG估值法、EV/EBITDA估值法等;絕對估值法主要採用折現的方法,如公司自由現金流模型、股權自由現金流模型和股利折現模型等。相對估值法因簡單易懂,便於計算而被廣泛使用;絕對估值法因基礎數據缺乏及不符合模型要求的全流通假設而一直處於非主流地位。隨著全流通時代的到來和國內證券市場的快速發展,絕對估值法正逐漸受到重視。
選股:在當前品種繁多的資本市場中,從浩瀚復雜的數據背後選出適合自己投資風格的股票變得越加困難。在基本面研究的基礎上結合量化分析的手段就可以構建數量化選股策略,主流的選股方法如下:
資產配置方法與模型
資產配置類別 資產配置層次 資產配置方法 資產配置模型
戰略資產配置 全球資產配置 大類資產配置 行業風格配置 收益測度 風險測度 估計方法 馬克維茨 MV 模型 均值 -LPM 模型 VaR 約束模型 Black-Litterman 模型
戰術資產配置 ( 動態資產配置 ) 周期判斷 風格判斷 時機判斷 行業輪動策略 風格輪動策略 Alpha 策略 投資組合保險策略
基本面選股:通過對上市公司財務指標的分析,找出影響股價的重要因子,如:與收益指標相關的盈利能力、與現金流指標相關的獲現能力、與負債率指標相關的償債能力、與凈資產指標相關的成長能力、與周轉率指標相關的資產管理能力等。然後通過建立股價與因子之間的關系模型得出對股票收益的預測。股價與因子的關系模型分為結構模型和統計模型兩類:結構模型給出股票的收益和因子之間的直觀表達,實用性較強,包括價值型(本傑明·格雷厄姆—防禦價值型、查爾斯·布蘭迪—價值型等)、成長型(德伍·切斯—大型成長動能、葛廉·畢克斯達夫—中大型成長股等)、價值成長型(沃倫·巴菲特—優質企業選擇法、彼得·林奇—GARP價值成長法等)三種選股方法;統計模型是用統計方法提取出近似線性無關的因子建立模型,這種建模方法因不需先驗知識且可以檢驗模型的有效性,被眾多經濟學家推崇,包括主成分法、極大似然法等。
多因素選股:通過尋找引起股價共同變動的因素,建立收益與聯動因素間線性相關關系的多因素模型。影響股價的共同因素包括宏觀因子、市場因子和統計因子(通過統計方法得到)三大類,通過逐步回歸和分層回歸的方法對三類因素進行選取,然後通過主成分分析選出解釋度較高的某幾個指標來反映原有的大部分信息。多因素模型對因子的選擇有很高的要求,因子的選擇可依賴統計方法、投資經驗或二者的結合,所選的因子要有統計意義上或市場意義上的顯著性,一般可從動量、波動性、成長性、規模、價值、活躍性及收益性等方面選擇指標來解釋股票的收益率。
動量、反向選股:動量選股策略是指分析股票在過去相對短期的表現,事先對股票收益和交易量設定條件,當條件滿足時買進或賣出股票的投資策略,該投資策略基於投資者對股票中期的反應不足和保守心理,在投資行為上表現為購買過去幾個月表現好的股票而賣出過去幾個月表現差的股票。反向選股策略則基於投資者的錨定和過度自信的心理特徵,認為投資者會對上市公司的業績狀況做出持續過度反應,形成對業績差的公司業績過分低估和業績的好公司業績過分高估的現象,這為投資者利用反向投資策略提供了套利機會,在投資行為上表現為買進過去表現差的股票而賣出過去表現好的股票。反向選股策略是行為金融學理論發展至今最為成熟,也是最受關注的策略之一。
二、資產配置
資產配置指資產類別選擇、投資組合中各類資產的配置比例以及對這些混合資產進行實時管理。資產配置一般包括兩大類別、三大層次,兩大類別為戰略資產配置和戰術/動態資產配置,三大層次為全球資產配置、大類資產配置和行業風格配置。資產配置的主要方法及模型如下:
戰略資產配置針對當前市場條件,在較長的時間周期內控制投資風險,使得長期風險調整後收益最大化。戰術資產配置通常在相對較短的時間周期內,針對某種具體的市場狀態制定最優配置策略,利用市場短期波動機會獲取超額收益。因此,戰術資產配置是在長期戰略配置的過程中針對市場變化制定的短期配置策略,二者相互補充。戰略資產配置為未來較長時間內的投資活動建立業務基準,戰術資產配置通過主動把握投資機會適當偏離戰略資產配置基準,獲取超額收益。
三、股價預測
股價的可預測性與有效市場假說密切相關。如果有效市場假說成立,股價就反映了所有相關的信息,價格變化服從隨機遊走,股價的預測就毫無意義,而我國的股市遠未達到有效市場階段,因此股價時間序列不是序列無關,而是序列相關的,即歷史數據對股價的形成起作用,因此可以通過對歷史信息的分析來預測股價。
主流的股價預測模型有灰色預測模型、神經網路預測模型和支持向量機預測模型(SVM)。灰色預測模型對股價的短期變化有很強的預測能力,近年發展起來的灰色預測模型包括GM(1, 1)模型、灰色新陳代謝模型和灰色馬爾可夫模型。人工神經網路模型具有巨量並行性、存儲分布性、結構可變性、高度非線性和自組織性等特點,且可以逼近任何連續函數,目前在金融分析和預測方面已有廣泛的應用,效果較好。支持向量機模型在解決小樣本、非線性及高維模式識別問題中有許多優勢,且結構簡單,具有全局優化性和較好的泛化能力,比神經網路有更好的擬合度。
四、績效評估
作為集合投資、風險分散、專業化管理、變現性強等特點的投資產品,基金的業績雖然受到投資者的關注,但要對基金有一個全面的評價,則需要考量基金業績變動背後的形成原因、基金回報的來源等因素,績效評估能夠在這方面提供較好的視角與方法,風險調整收益、擇時/股能力、業績歸因分析、業績持續性及Fama的業績分解等指標和方法可從不同的角度對基金的績效進行評估。
績效評估模型 / 指標
績效評估准則
擇時 / 股能力
業績歸因分析
風險調整收益
業績持續性
Fama 業績分解
模型 / 指標
T-M 模型
H-M 模型
GII 模型
C-L 模型
資產配置收益
證券選擇收益
行業選擇收益
行業內個股選擇收益
RAROC
Sharp, Stutzer
Treynor, Jensen
, ,
雙向表分析
時間序列相關性
總風險收益
系統風險收益
分散化投資收益
五、基於行為金融學的投資策略
上世紀50~70年代,隨著馬科維茨組合理論、CAPM模型、MM定理及有效市場假說的提出,現代金融經濟學建立了一套成熟的理論體系,並且在學術界占據了主導地位,也被國際投資機構廣泛應用和推廣,但以上傳統經濟學的理論基石是理性人假設,在理性人假設下,市場是有效率的,但進入80年代以後,關於股票市場的一系列研究和實證發現了與理性人假設不符合的異常現象,如:日歷效應、股權溢價之謎、期權微笑、封閉式基金折溢價之謎、小盤股效應等。面對這些金融市場的異常現象,諸多研究學者從傳統金融理論的基本假設入手,放鬆關於投資者是完全理性的嚴格假設,吸收心理學的研究成果,研究股市投資者行為、價格形成機制與價格表現特徵,取得了一系列有影響的研究成果,形成了具有重要影響力的學術流派-行為金融學。
行為金融學是對傳統金融學理論的革命,也是對傳統投資實踐的挑戰。隨著行為金融理論的發展,理論界和投資界對行為金融理論和相關投資策略作了廣泛的宣傳和應用,好買認為,無論機構投資者還是個人投資者,了解行為金融學的指導意義在於:可以採取針對非理性市場行為的投資策略來實現投資目標。在大多數投資者認識到自己的錯誤以前,投資那些定價錯誤的股票,並在股價正確定位之後獲利。目前國際金融市場中比較常見且相對成熟的行為金融投資策略包括動量投資策略、反向投資策略、小盤股策略和時間分散化策略等。
六、程序化交易與演算法交易策略
根據NYSE的定義,程序化交易指任何含有15隻股票以上或單值為一百萬美元以上的交易。程序化交易強調訂單是如何生成的,即通過某種策略生成交易指令,以便實現某個特定的投資目標。程序化交易主要是大機構的工具,它們同時買進或賣出整個股票組合,而買進和賣出程序可以用來實現不同的目標,目前程序化交易策略主要包括數量化程序交易策略、動態對沖策略、指數套利策略、配對交易策略和久期平均策略等。
演算法交易,也稱自動交易、黑盒交易或無人值守交易,是使用計算機來確定訂單最佳的執行路徑、執行時間、執行價格及執行數量的交易方法,主要針對經紀商。演算法交易廣泛應用於對沖基金、企業年金、共同基金以及其他一些大型的機構投資者,他們使用演算法交易對大額訂單進行分拆,尋找最佳路由和最有利的執行價格,以降低市場的沖擊成本、提高執行效率和訂單執行的隱蔽性。任何投資策略都可以使用演算法交易進行訂單的執行,包括做市、場內價差交易、套利及趨勢跟隨交易。演算法交易在交易中的作用主要體現在智能路由、降低沖擊成本、提高執行效率、減少人力成本和增加投資組合收益等方面。主要的演算法包括:交易量加權平均價格演算法(VWAP)、保證成交量加權平均價格演算法(Guaranteed VWAP)、時間加權平均價格演算法(TWAP)、游擊戰演算法(Guerrilla)、狙擊手演算法(Sniper)、模式識別演算法(Pattern Recognition)等。
綜上所述,數量化投資技術貫穿基金的整個投資流程,從估值選股、資產配置到程序化交易與績效評估等。結合量化投資的特點及我國證券市場的現狀,好買認為量化投資技術在國內基金業中的應用將主要集中在量化選股、資產配置、績效評估與風險管理、行為金融等方面,而隨著包括基金在內的機構投資者佔比的不斷提高、衍生品工具的日漸豐富(股指期貨、融資融券等)以及量化投資技術的進步,基金管理人的投資策略將會越來越復雜,程序化交易(系統)也將有快速的發展。