『壹』 什么是久期在债券中起到什么作用他的计算公式为
生存分析,专门用来做这个的,它估计出生存时间的分布,然后当然就可以计算平均年限了。
『贰』 债券组合久期的计算方法
债券组合的久期等于每只债券久期的加权平均,权数用持有该债券的市值占债券持有量市值的比重。
『叁』 一个债券价格和麦考利久期的计算
修正久期=麦考利久期÷[1+(Y/N)],
因为这里,1+Y/N=1+11。5%/2=1。0575;
因此,正持续时间=13.83/1.0575=12.37163,D是最合适的答案。
MACDUR=maturity(T),修改后的存续期=T/[1+(Y/N)],Y为年利率,复利次数在N个表中计算。
对于付息债券,MACDUR=每期贴现率除以当前价值乘以期数,修改后的期限=MAC/[1+(Y/N)]。
如果市场利率是Y,现金流(X1,X2,...,Xn)的麦考利久期定义为:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期现金流的现值,D表示久期。
(3)债券久期的简便公式扩展阅读:
调整期是指特定债券的到期收益率相对于麦考利期的一个小变化。这个比率是基于债券到期收益率很小的前提下的近似比率。债券价格是衡量债券价格对利率变动敏感性的一个较为准确的指标。
当投资者判断当前的利率水平有可能上升时,他们将注意力集中在短期债券上,缩短债券的期限。当投资者判断当前利率可能会下降时,延长债券到期日并加大对长期债券的投资,有助于投资者在债券市场上涨时获得更高的溢价。
修订的期限定义:
P/P物质-D乘以y+conv(1/2)乘以y²
由该公式可以看出,对于给定的到期收益率变化较小的情况下,债券价格的相对变化与修正后的期限之间存在严格的比例关系。因此,考虑到Y收益率,调整期是衡量债券价格对利率变化的敏感性的更准确的指标。
『肆』 关于债券组合久期的计算
债券组合的久期,是按照市值加权计算的,A债券的权重是60%,B债券的权重是40%
组合的久期=60%*7+40%*10=8.2
『伍』 关于久期的解释和计算方法
久期也称持续期,是1938年由F.R.Macaulay提出的。它是以未来时间发生的现金流,按照目前的收益率折现成现值,再用每笔现值乘以现在距离该笔现金流发生时间点的时间年限,然后进行求和,以这个总和除以债券各期现金流折现之和得到的数值就是久期。
『久期,全称麦考利久期-Macaulay ration, 数学定义:
如果市场利率是Y,现金流(X1,X2,...,Xn)的麦考利久期定义为:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期现金流的现值,D表示久期。
Macaulay Duration Example
Macaulay Duration Example
通过下面例子可以更好理解久期的定义。
例子:假设有一债券,在未来n年的现金流为(X1,X2,...Xn),其中Xi表示第i期的现金流。假设利率为Y0,投资者持有现金流不久,利率立即发生升高,变为Y,问:应该持有多长时间,才能使得其到期的价值不低于利率为Y0的价值?
通过下面定理可以快速解答上面问题。
定理:PV(Y0)*(1+Y0)^q<=PV(Y)(1+Y)^q的必要条件是q=D(Y0)。这里D(Y0)=(X1/(1+Y0)+2*X2/(1+Y0)^2+...+n*Xn/(1+Y0)^n)/PV(Y0)
q即为所求时间,即为久期。
上述定理的证明可通过对Y导数求倒数,使其在Y=Y0取局部最小值得到。
在债券分析中,久期已经超越了时间的概念。修正久期大的债券,利率上升所引起价格下降幅度就越大,而利率下降所引起的债券价格上升幅度也越大。可见,同等要素条件下,修正久期小的债券比修正久期大的债券抗利率上升风险能力强;但相应地,在利率下降同等程度的条件下,获取收益的能力较弱。
正是久期的上述特征给我们的债券投资提供了参照。当我们判断当前的利率水平存在上升可能,就可以集中投资于短期品种、缩短债券久期;而当我们判断当前的利率水平有可能下降,则拉长债券久期、加大长期债券的投资,这就可以帮助我们在债市的上涨中获得更高的溢价。
『陆』 一个关于债券久期的计算问题
债券息票为10元,价格用excel计算得,96.30元
久期=(1*10/(1+11%)^1+2*10/(1+11%)^2+3*10/(1+11%)^3+4*10/(1+11%)^4+5*10/(1+11%)^5+5*100/(1+11%)^5)/96.30=4.15
若利率下降1个百分点,债券价格上升=4.15*1%=4.15%
变化后债券价格=96.30*(1+4.15%)=100.30元
当然,以久期衡量的价格变化均为近似值,因为我们知道,当利率变为10%后,就等于票面利率,债券价格应该为100元整。
『柒』 债券久期如何计算
债券久期是债券投资的专业术语,反映的是债券价格相对市场利率正常的波动敏感程度,也就是债券持有到期时间。久期越长,债券对利率敏感度越高,其对应风险也越大。
债券久期计算公式有三种,分别是:
公式一:
(7)债券久期的简便公式扩展阅读:
债券是政府、企业、银行等债务人为筹集资金,按照法定程序发行并向债权人承诺于指定日期还本付息的有价证券。
债券(Bonds / debenture)是一种金融契约,是政府、金融机构、工商企业等直接向社会借债筹借资金时,向投资者发行,同时承诺按一定利率支付利息并按约定条件偿还本金的债权债务凭证。债券的本质是债的证明书,具有法律效力。债券购买者或投资者与发行者之间是一种债权债务关系,债券发行人即债务人,投资者(债券购买者)即债权人 。
债券是一种有价证券。由于债券的利息通常是事先确定的,所以债券是固定利息证券(定息证券)的一种。在金融市场发达的国家和地区,债券可以上市流通。在中国,比较典型的政府债券是国库券。
『捌』 1)计算一个债券的修正久期、、请给出详细解答过程
修正久期=麦考利久期÷[1+(Y/N)],
因为,在本题中,1+Y/N=1+11.5%/2=1.0575;
所以,正久期=13.083/1.0575=12.37163,D是最合适的答案。
麦考林久期(MAC DUR),修正久期(MOD DUR)分零息与付息债券,对于零息MAC DUR=到期时间(T),修正久期=T/[1+(Y/N)],Y表示年利率,N表计算复利次数。
对于付息债券,MAC DUR=每期支付折现除以现值乘与期数,修正久期=MAC/[1+(Y/N)]。
修正久期是对于给定的到期收益率的微小变动,债券价格的相对变动与其麦考利久期的比例。这种比例关系是一种近似的比例关系,以债券的到期收益率很小为前提。是在考虑了收益率的基础上对麦考利久期进行的修正,是债券价格对于利率变动灵敏性的更加精确的度量。
当投资者判断当前的利率水平有可能上升时,集中投资于短期债券、缩短债券久期;当投资者判断当前的利率水平有可能下降时,拉长债券久期、加大长期债券的投资,帮助投资者在债市的上涨中获得更高的溢价。
修正久期定义:
△P/P≈-D*×△y+(1/2)*conv*(△y)^2
从这个式子可以看出,对于给定的到期收益率的微小变动,债券价格的相对变动与修正久期之间存在着严格的比例关系。所以说修正久期是在考虑了收益率项 y 的基础上对 Macaulay久期进行的修正,是债券价格对于利率变动灵敏性的更加精确的度量。
『玖』 保险负债久期计算公式
负债久期,就是负债的价格对于利率变动的敏感程度。
扩展阅读:
久期是指资产或者负债的价格对于利率变动的敏感程度。久期越大,资产或者负债的波动越大,风险越大。久期主要是在于债券的分析
所投资的债券对利率变动的敏感程度(又称久期),
利率敏感程度:
1、债券价格的涨跌与利率的升降成反向关系。利率上升的时候,债券价格便下滑。要知道债券价格变化,从而知道债券基金的资产净值对于利率变动的敏感程度如何,可以用久期作为指标来衡量。
2、久期取决于债券的三大因素:到期期限,本金和利息支出的现金流,到期收益率。久期以年计算,但与债券的到期期限是不同的概念。借助这项指标,你可以了解到,所考察的基金由于利率的变动而获益或损失多少。
3、久期越长,债券基金的资产净值对利息的变动越敏感。假若某支债券基金的久期是5年,那么如果利率下降1个百分点,则基金的资产净值约增加5个百分点;反之,如果利率上涨1个百分点,则基金的资产净值要遭受5个百分点的损失。又如,有两支债券基金,久期分别为4年和2年,前者资产净值的波动幅度大约为后者的两倍。
扩展阅读:【保险】怎么买,哪个好,手把手教你避开保险的这些"坑"
『拾』 久期的计算的计算公式是什么
如果市场利率是Y,现金流(X1,X2,...,Xn)的麦考利久期定义为:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期现金流的现值,D表示久期。
(10)债券久期的简便公式扩展阅读:
久期定理
定理一:只有零息债券的马考勒久期等于它们的到期时间。
定理二:直接债券的马考勒久期小于或等于它们的到期时间。
定理三:统一公债的马考勒久期等于(1+1/y),其中y是计算现值采用的贴现率。
定理四:在到期时间相同的条件下,息票率越高,久期越短。
定理五:在息票率不变的条件下,到期时间越久,久期一般也越长。
定理六:在其他条件不变的情况下,债券的到期收益率越低,久期越长。