导航:首页 > 债券融资 > 债券的能量算法的聚类算法

债券的能量算法的聚类算法

发布时间:2021-07-12 15:31:30

Ⅰ 分类和聚类的区别及各自的常见算法

1、分类和聚类的区别:
Classification (分类),对于一个classifier,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做supervised learning (监督学习),
Clustering (聚类),简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在Machine Learning中被称作unsupervised learning (无监督学习).
2、常见的分类与聚类算法
所谓分类,简单来说,就是根据文本的特征或属性,划分到已有的类别中。如在自然语言处理NLP中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:决策树分类法,朴素贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,神经网络法,k-最近邻法(k-nearestneighbor,kNN),模糊分类法等等。
分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。
而K均值(K-mensclustering)聚类则是最典型的聚类算法(当然,除此之外,还有很多诸如属于划分法K中心点(K-MEDOIDS)算法、CLARANS算法;属于层次法的BIRCH算法、CURE算法、CHAMELEON算法等;基于密度的方法:DBSCAN算法、OPTICS算法、DENCLUE算法等;基于网格的方法:STING算法、CLIQUE算法、WAVE-CLUSTER算法;基于模型的方法)。

Ⅱ 层次聚类算法是动态聚类算法吗

应该都是动态聚类算法,K均值肯定是
应该都是动态聚类算法,K均值肯定是

Ⅲ 聚类算法的具体方法

k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
k-means 算法的工作过程说明如下:
首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;
然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。
一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 K-MEANS有其缺点:产生类的大小相差不会很大,对于脏数据很敏感。
改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心的作用,这样的一个medoid就标识了这个类。K-medoids和K-means不一样的地方在于中心点的选取,在K-means中,我们将中心点取为当前cluster中所有数据点的平均值,在 K-medoids算法中,我们将从当前cluster 中选取这样一个点——它到其他所有(当前cluster中的)点的距离之和最小——作为中心点。
步骤:
1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。
以下是循环的:
2,将余下的对象分到各个类中去(根据与medoid最相近的原则);
3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。
4,这样循环直到K个medoids固定下来。
这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。 上面提到K-medoids算法不适合于大数据量的计算。Clara算法,这是一种基于采样的方法,它能够处理大量的数据。
Clara算法的思想就是用实际数据的抽样来代替整个数据,然后再在这些抽样的数据上利用K-medoids算法得到最佳的medoids。Clara算法从实际数据中抽取多个采样,在每个采样上都用K-medoids算法得到相应的(O1, O2 … Oi … Ok),然后在这当中选取E最小的一个作为最终的结果。 Clara算法的效率取决于采样的大小,一般不太可能得到最佳的结果。
在Clara算法的基础上,又提出了Clarans的算法,与Clara算法不同的是:在Clara算法寻找最佳的medoids的过程中,采样都是不变的。而Clarans算法在每一次循环的过程中所采用的采样都是不一样的。
与上面所讲的寻找最佳medoids的过程不同的是,必须人为地来限定循环的次数。

Ⅳ k均值聚类算法、c均值聚类算法、模糊的c均值聚类算法的区别是什么

k均值聚类:---------一种硬聚类算法,隶属度只有两个取值0或1,提出的基本根据是“类内误差平方和最小化”准则;
模糊的c均值聚类算法:-------- 一种模糊聚类算法,是k均值聚类算法的推广形式,隶属度取值为[0 1]区间内的任何一个数,提出的基本根据是“类内加权误差平方和最小化”准则;
这两个方法都是迭代求取最终的聚类划分,即聚类中心与隶属度值。两者都不能保证找到问题的最优解,都有可能收敛到局部极值,模糊c均值甚至可能是鞍点。
至于c均值似乎没有这么叫的,至少从我看到文献来看是没有。不必纠结于名称。如果你看的是某本模式识别的书,可能它想表达的意思就是k均值。
实际上k-means这个单词最先是好像在1965年的一篇文献提出来的,后来很多人把这种聚类叫做k均值。但是实际上十多年前就有了类似的算法,但是名字不一样,k均值的历史相当的复杂,在若干不同的领域都被单独提出。追寻算法的名称与历史没什么意义,明白具体的实现方法就好了。

Ⅳ 有哪些常用的聚类算法

划分法
划分法(partitioning methods),给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:
(1) 每一个分组至少包含一个数据纪录;
(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);
对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的纪录越远越好。
大部分划分方法是基于距离的。给定要构建的分区数k,划分方法首先创建一个初始化划分。然后,它采用一种迭代的重定位技术,通过把对象从一个组移动到另一个组来进行划分。一个好的划分的一般准备是:同一个簇中的对象尽可能相互接近或相关,而不同的簇中的对象尽可能远离或不同。还有许多评判划分质量的其他准则。传统的划分方法可以扩展到子空间聚类,而不是搜索整个数据空间。当存在很多属性并且数据稀疏时,这是有用的。为了达到全局最优,基于划分的聚类可能需要穷举所有可能的划分,计算量极大。实际上,大多数应用都采用了流行的启发式方法,如k-均值和k-中心算法,渐近的提高聚类质量,逼近局部最优解。这些启发式聚类方法很适合发现中小规模的数据库中小规模的数据库中的球状簇。为了发现具有复杂形状的簇和对超大型数据集进行聚类,需要进一步扩展基于划分的方法。[1]
使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法;

层次法
层次法(hierarchical methods),这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。
例如,在“自底向上”方案中,初始时每一个数据纪录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。
层次聚类方法可以是基于距离的或基于密度或连通性的。层次聚类方法的一些扩展也考虑了子空间聚类。层次方法的缺陷在于,一旦一个步骤(合并或分裂)完成,它就不能被撤销。这个严格规定是有用的,因为不用担心不同选择的组合数目,它将产生较小的计算开销。然而这种技术不能更正错误的决定。已经提出了一些提高层次聚类质量的方法。[1]
代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等;

密度算法
基于密度的方法(density-based methods),基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。
这个方法的指导思想就是,只要一个区域中的点的密度大过某个阈值,就把它加到与之相近的聚类中去。
代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等;

图论聚类法
图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。因此,每一个最小处理单元数据之间都会有一个度量表达,这就确保了数据的局部特性比较易于处理。图论聚类法是以样本数据的局域连接特征作为聚类的主要信息源,因而其主要优点是易于处理局部数据的特性。

网格算法
基于网格的方法(grid-based methods),这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。这么处理的一个突出的优点就是处理速度很快,通常这是与目标数据库中记录的个数无关的,它只与把数据空间分为多少个单元有关。
代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法;

模型算法
基于模型的方法(model-based methods),基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。这样一个模型可能是数据点在空间中的密度分布函数或者其它。它的一个潜在的假定就是:目标数据集是由一系列的概率分布所决定的。
通常有两种尝试方向:统计的方案和神经网络的方案。

Ⅵ 协同过滤算法和聚类算法有什么区别

协同过滤多处理的是异构数据,数据差别大种类多;聚类多处理的是同构数据

Ⅶ NMF算法和聚类算法的联系与区别

1、NMF方法简介
NMF(Non-negative Matrix Factorization,非负矩阵分解)是一种矩阵分解方法,最早是在1999年Nature杂志刊登的由D.D.Lee和H.S.Seung两位科学家提出的一个对非负矩阵研究的成果。
NMF的目标:
给定一个所有元素均为非负的矩阵V,维数为n*m。要寻找到两个非负矩阵W和H,使得尽可能满足V=WH。其中W维数为n*r,H维数为r*m。
NMF的算法思想:
NMF的目标不是找到使得V=WH严格成立的矩阵分解,而是使得V和WH尽可能接近。这就需要构造一个代价函数J(V,W,H),满足V和WH越接近,J越小。然后可以根据J本身的连续性、凹凸性等特征,使用恰当的优化方法,最终得到符合条件的W和H。
其中,代价函数J可以取很多种,这里介绍两种:
(1)2范数距离:J=||V-WH||。
2范数距离定义如下:
使用拉格朗日KKT方法来寻找最优解,每次迭代公式如下:
当W和H是一个稳定点时,迭代收敛。
(2)KL距离:J=D(V||WH)。
KL距离定义如下:
使用拉格朗日KKT方法来寻找最优解,每次迭代公式如下:
当W和H是一个稳定点时,迭代收敛。
2、NMF聚类应用
有一个数据集,共m个样本,每个样本维度为n,构成了矩阵X,大小为n*m,即每一列为一个样本。
使用NMF方法,寻找到了W和H,使得X=WH。其中,X的第i列,就等于W乘以H的第i列,可以这样理解,H的第i列的第j个元素,相当于W的第j列的权重,X的第i列就是W的每一列与权重的乘积的求和。或者说,W的每一列相当于一个基向量,H的每一列相当于坐标向量。这样,就将原本样本的n维,转换成了r 维,r 维的每个元素对应一个基向量的坐标。因此,将原本对X聚类的问题,通过降维,转化为了对H聚类的问题。接下来就可以使用经典的聚类方法,比如k均值等。

Ⅷ 聚类算法 结果 啥样

聚类是对数据空间中数据对象进行分类,位于同一类中的数据对象之间的相似度较大,而位于不同类之间的数据对象差异度较大。聚类是一种无监督学习,能自动对数据集进行划分。常见的聚类算法:k-means,DBSCAN,CURE等算法。
简单地讲,聚类的结果就是得到数据集中数据对象的类别信息。例如,将以下几种物品玫瑰、红枫、松树、老虎、大象、绵羊等进行聚类,就应该得到玫瑰、红枫、松树属于同一类,老虎、大象、绵羊属于一类,可以对这自己对这两类赋予标记,如“植物”、“动物”这两个标记分别代表聚类空间中的两个类。。
更详细的请参考《数据挖掘概念与技术》。

Ⅸ 聚类算法有哪些

聚类算法有:划分法、层次法、密度算法、图论聚类法、网格算法、模型算法。

1、划分法

划分法(partitioning methods),给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法。

2、层次法

层次法(hierarchical methods),这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等。

3、密度算法

基于密度的方法(density-based methods),基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等。

4、图论聚类法

图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。因此,每一个最小处理单元数据之间都会有一个度量表达,这就确保了数据的局部特性比较易于处理。图论聚类法是以样本数据的局域连接特征作为聚类的主要信息源,因而其主要优点是易于处理局部数据的特性。

5、网格算法

基于网格的方法(grid-based methods),这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法。

6、模型算法

基于模型的方法(model-based methods),基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。通常有两种尝试方向:统计的方案和神经网络的方案。

(9)债券的能量算法的聚类算法扩展阅读:

聚类分析起源于分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又将多元分析的技术引入到数值分类学形成了聚类分析。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。

Ⅹ 聚类分析聚类算法中包含哪些数据类型

聚类分析聚类算法中包含哪些数据类型
许多基于内存的聚类算法采用以下两种数据结构:
(1)数据矩阵(Data Matrix,或称对象一变盘结构):用p个变量来表示n个对象,例如使用年龄、身高、性别、体重等属性变量来表示对象人,也叫二模矩阵,行与列代表不同实体:

(2)相异度矩阵(Dissimilarity Matrix,又称为对象一对象结构):存储所有成对的n个对象两两之间的近似性(邻近度),也叫单模矩阵,行和列代表相同的实体。其中d(ij)是对象i和对象j之间的测量差或相异度。d(i,f)是一个非负的数值,d(ij)越大,两个对象越不同;d (i,j)越接近于0,则两者之间越相似(相近)。

许多聚类算法都是以相异度矩阵为基础的,如果数据是用数据矩阵形式表示,则往往要将其先转化为相异度矩阵。
相异度d(i,j)的具体计算会因所使用的数据类型不同而不同,常用的数据类型包括:区间标度变量,二元变量,标称型、序数型和比例标度型变量,混合类型的变量。

阅读全文

与债券的能量算法的聚类算法相关的资料

热点内容
地狱解剖类型电影 浏览:369
文定是什么电影 浏览:981
什么影院可以看VIP 浏览:455
受到刺激后身上会长樱花的图案是哪部电影 浏览:454
免费电影在线观看完整版国产 浏览:122
韩国双胞胎兄弟的爱情电影 浏览:333
法国啄木鸟有哪些好看的 浏览:484
能看片的免费网站 浏览:954
七八十年代大尺度电影或电视剧 浏览:724
欧美荒岛爱情电影 浏览:809
日本有部电影女教师被学生在教室轮奸 浏览:325
畸形丧尸电影 浏览:99
美片排名前十 浏览:591
韩国电影新妈妈女主角叫什么 浏览:229
黑金删减了什么片段 浏览:280
泰国宝儿的电影有哪些 浏览:583
3d左右格式电影网 浏览:562
跟师生情有关的电影 浏览:525
恐怖鬼片大全免费观看 浏览:942
电影里三节是多长时间 浏览:583