『壹』 知道债券的到期收益率,剩余年限,久期和凸性怎么求贴现率
这些变量和贴现率并没有多大关系。
首先,YTM本身就可以作为贴现率来代入公式使用。
其次,更精确的做法是使用国债的收益率曲线。
『贰』 金融久期及凸性计算题
看了这个帖子才知道Duration和Convexity的中文翻译是“久期”和“凸性”...
1.
Modified Duration
= (1 * PVCF1 + 2 * PVCF2 + ... + n * PVCFn)/(k * Price)(1 + yield/k)
其中:
PVCF是每笔资金流的现值。
k是每年付款的次数。你说是欧洲美元债券,所以我设k=2
Price是债券的价格。因为票息率等于收益率,所以价格等于面值。
yield是收益率。
用这个公式计算出来,Modified Duration是4.96,即D=4.96。具体的资金流情况如下:
资金期数 资金值 资金现值
1 $40.00 $38.46
2 $40.00 $36.98
3 $40.00 $35.56
4 $40.00 $34.19
5 $40.00 $32.88
6 $40.00 $31.61
7 $40.00 $30.40
8 $40.00 $29.23
9 $40.00 $28.10
10 $40.00 $27.02
11 $40.00 $25.98
12 $1,040.00 $649.58
2、
Convexity = [(V+) + (V-) - 2(V0)] / [2 (V0) (delta yield)^2]
其中:
V+是收益率增加后的债券价格,这里是999.53785。
V-是收益率下降后的债券价格,这里是1000.46243。
V0是目前收益率下的债券价格,这里是面值1000。
delta yield是上升和下降的收益率之差,这里是0.0002。
用这个公式计算,Convexity是3.5,即G=3.5。
3.
Percentage Price Change
= -Duration * delta yield * 100 + Convexity * (delta yield)^2 * 100
= -4.96 * 0.02 * 100 + 3.5 * (0.02)^2 * 100
= -9.78%
『叁』 国债中的"修正久期"和"凸性"是什么意思
问得比较专业,呵呵。 1962年麦尔齐最早提出债券定价的五个原理,至今被视为债券定价理论的经典。其一,债券的价格与收益率成反比关系。其二,对于期限既定的债券,由收益率下降导致的债券价格上升的幅度大于同等幅度的收益率上升导致的债券价格下降的幅度。由此而推出债券价值分析的“凸性”概念,凸性反映债券价格与债券收益率在图形中的反比关系,等于价格-收益曲线除以债券价格的二阶导数。 计算公式;c=1/p∑pv(t2+t)/(1+y)t+2 久期是马考勒提出的,它使用加权平均的形式计算债券的平均到期时间 公式:D=∑[PV(ct)t/P0] 修正马考勒久期是债券价格曲线的斜率,即久期除以(1+y),在度量债券的利率风险方面,修正久期比久期更加方便。他是一个强度概念,反映市场利率变化对债券价格的影响强度。
『肆』 CFA一级中关于固定收益部分久期凸性计算的一道题。请教
根据ration,变化2%*10.34=20.68%
再根据convexity修正,肯定是小于20.68%的,就选17.65%
具体变化=-2%*10.34+(1/2)*151.60*2%*2%=-17.648%
至于困扰你的计算convexity时候为什么要除以2,因为ration是利率变化的一阶导数,而convexity是利率变化的二阶导数,泰勒级数的展开的第二项,就是要乘以二分之一,如果有三阶导数,更精确,三阶导数的系数就是六分之一。这是一个纯粹的数学问题。你在考试时,需要记住这个公式。
『伍』 有关久期凸性的计算债券价格
第一问,以市场利率为6%为例,计算现在的合理债券价格=5/(1+6%)+5/(1+6%)^2+5/(1+6%)^3+5/(1+6%)^4+5/(1+6%)^5+100/(1+6%)^5=95.79元
其他各种利率,把6%换成不同的折现率,分别计算。
在市场利率为5%、5.5%、5.85%、6%、6.2%的时候,债券价格分别为:
100元、97.86元、96.40元、95.79元、94.97元。
第二问,以市场利率5%为例,市场利率上升5、10、50、100个基点,变化后的市场利率分别为5.05%、5.1%、5.5%和6%,套用以上公式,债券价格分别为:99.78元、99.57元、97.86元、95.79元。
修正久期公式为△P/P≈-D*×△y
我们考察市场利率从5%变化到5.05%这个微小变化,价格变化为-0.22,利率变化为0.05%
P=100,所以修正久期D*=4.4
根据这个修正久期,当市场利率从5%变化到5.1%的时候,债券价格将下降4.4*0.1=0.44元,即,从100元变为99.56元,实际价格变为99.57元,实际的差距是0.01元。
凸性设为C,则对于0.1个百分比的变化率,有
0.01元=1/2 * C * 0.1^2
解得C=2,凸度为2.
以上供参考。
『陆』 久期和凸性是对到期收益率的还是市场利率的
债券价格P是未来一系列现金流的贴现,久期D就是以折现现金流为权重的未来现金流的平均回流时间。债券中一个最重要的概念就是久期,主要是为了定量的度量利率风险,但麦考利久期不易度量,所以引入了一个修正久期D/(1+y),而凸性是对债券价格利率敏感性的二阶估计,是对债券久期利率敏感性的更精确的测量。
债券价格与市场利率是呈反比。因为市场利率上升,则债券潜在购买者就要求与市场利率相一致的到期收益率,那么就需债券价格下降,即到期收益率向市场利率看齐。
债券收益率也当然是和债券价格呈反比的,但这种反比关系是非线性的,债券的凸性能够准确描述债券价格与收益率之间非线性的反比关系,而债券的久期将反比关系视为线性的,只是一个近似的公式。
将债券价格P对贴现率y(一般y为到期收益率)进行一阶求导,就可得到dP/dy=-D/(1+y) *P
称D/(1+y)为修正久期
债券期限越长,久期也就越长,息票率越高,那么前期收到的现金流就越多,回收期就缩短,即息票率越高,久期越小。
凸性随久期的增加而增加。若收益率、久期不变,票面利率越大,凸性越大。利率下降时,凸性增加。
望采纳,谢谢
『柒』 您好,请问您知道债券的久期与凸度的区别吗
久期项是债券价格与利率关系的一阶导数,凸性是债券价格对利率的二阶导数。
债券价格的实际变动量是久期和凸性两个因素所导致的价格变动部分的叠加。而对于收益率较大幅度的变动,仅仅使用久期的部分作为价格变动的估计是有较大误差的,在这种情况下,债券价格的变化幅度可以通过加总久期和凸性所分别导致的价格变化部分而得到更为准确的估计。具体地说,只要将二者直接进行简单的加总即可。
现实中的应用:若预测收益率将下降,对于久期相同的债券,选择凸性较大的品种较为有利,反之则反。
『捌』 久期的升级也就是凸性是由谁提出的呢
1962年麦尔齐最早提出债券定价的五个原理,至今被视为债券定价理论的经典。其一,债券的价格与收益率成反比关系。其二,对于期限既定的债券,由收益率下降导致的债券价格上升的幅度大于同等幅度的收益率上升导致的债券价格下降的幅度。由此而推出债券价值分析的“凸性”概念,凸性反映债券价格与债券收益率在图形中的反比关系,等于价格-收益曲线除以债券价格的二阶导数。
『玖』 久期及凸性的解释,求息票债券的价格及久期
价格:982.27,久期1.87
久期和凸性分析债券的利率风险,即到期收益率随市场利率发生变化时,债券价格的变化
实际上债券价格和到期收益率形成一个曲线,分析在到期收益率(本例中为10%)附近的曲线,将此曲线近似为直线,就是久期;近似为二次曲线,就是凸性。