① 市场利率为10%,永久的年付息一次的债券的久期是多少
债券的定价可以看成是债券未来一系列利息和还本时本金的现值,此题可以这样理解:第一年利息的现值10/(1+10%)+第二年利息的现值10/(1+10%)^2+第三年利息的现值10/(1+10%)^3+...+第九年利息的折现10/(1+10%)^9+第十年利息折现10/(1+10%)^10加第十年还本金时的折现100/(1+10%)^10,你算一算,正好是100元,也就是这个债券根据目前的条件现在的价格就是100元。(当然可以利用年金公式进行快速计算),这一题的规律是当债券的票面利率和市场利率相同时,债券的面值就等于债券的价格。
② 有三个债券,期限都为3年,票面价值都为1000元,风险相当,请分别求这三个债券的久期.
我假设你说的债券B的票面利率是4%,你写的40%是笔误。
债券A的麦考利久期,根据定义,就是至安全的期限,是3.
债券B现在的价格=40/(1+10%)+40/(1+10%)^2+40/(1+10%)^3+1000/(1+10%)^3=850.79元
债券B的麦考利久期=[40*1/(1+10%)+40*2/(1+10%)^2+40*3/(1+10%)^3+1000*3/(1+10%)^3]/850.79=2.88
债券C现在的价格=1000元
债券B的麦考利久期=[100*1/(1+10%)+100*2/(1+10%)^2+100*3/(1+10%)^3+1000*3/(1+10%)^3]/1000=2.74
第一种还款方式的现金流为:
0 -200
1 52.7595
2 52.7595
3 52.7595
4 52.7595
5 52.7595
麦考利久期=[52.7595/(1+10%)+52.7595*2/(1+10%)^2+52.7595*3/(1+10%)^3+52.7595*4/(1+10%)^4+52.7595*5/(1+10%)^5]/200=2.81
修正久期=2.81/(1+10%)=2.55
第二种还款方式的现金流为:
0 -200
1 20
2 20
3 20
4 20
5 220
麦考利久期=[20/(1+10%)+20*2/(1+10%)^2+20*3/(1+10%)^3+20*4/(1+10%)^4+220*5/(1+10%)^5]/200=4.17
修正久期=4.17/(1+10%)=3.79
若利率上升1个百分点,则根据修正久期,还款方式1将导致债务总额下降2.55%,价值变为200*(1-2.55%)=194.9万元,
还款方式2将导致债务总额下降3.79%,价值变为200*(1-3.79%)=192.42万元。
③ 久期和债券的到期收益率是什么关系
票面利率、到期时间、初始收益率是影响债券价格的利率敏感性的三个重要因素,它们与久期之间的关系也表现出一些规则。
1.保持其它因素不变,票面利率越低,息票债券的久期越长。
票面利率越高时,早期的现金流现值越大,占债券价格的权重越高,使时间的加权平均值越低,即久期越短。
2.保持其它因素不变,到期收益率越低,息票债券的久期越长。
到期收益率越低时,后期的现金流现值越大,在债券价格中所占的比重也越高,时间的加权平均值越高,久期越长。
3.一般来说,在其它因素不变的情况下,到期时间越长,久期越长。
债券的到期时间越长,价格的利率敏感性越强,这与债券的到期时间越长久期越长是一致的。但是,久期并不一定总随着到期时间的增长而增长。
④ A 和B 是两个永久债券,A 的息票为4% ,B 为8% 。 假设两个债券以同样的收益率交易,其久期关系是什么
相同收益率可以理解为相同的贴现率,但你忽略了其他细节问题,建议你先看一下久期定理:
定理一:只有零息债券的马考勒久期等于它们的到期时间。
定理二:直接债券的马考勒久期小于或等于它们的到期时间。
定理三:统一公债的马考勒久期等于(1+1/y),其中y是计算现值采用的贴现率。
定理四:在到期时间相同的条件下,息票率越高,久期越短。
定理五:在息票率不变的条件下,到期时间越久,久期一般也越长。
定理六:在其他条件不变的情况下,债券的到期收益率越低,久期越长。
很明显这道题是适用于定理四(注意定理四和五是默认在贴现率相同的情况下来说的),永久债券说明它们的剩余期限是相同的,且贴现率也是相同,只有息票率不同,在这种情况下,息票率越高,久期越短,由于B的息票率高于A,所以A的久期要比B大,故此是选A。
⑤ 什么是债券修正久期,具体怎么计算 / 债券
修正久期指的是对于给定的到期收益率的微小变动,债券价格的相对变动与其麦考利久期为正变关系。这种正变关系只是一种近似的比例关系,它的成立是以债券的到期收益率很小为前提的。当然,为了更精确地描述债券价格对于到期收益率变动的灵敏性,又引入了修正久期模型,考虑凸度。
公式:△P/P≈-D*×△y+(1/2)*conv*(△y)^2
⑥ 债券 久期是什么
债券的久期
1.麦考利久期又称为存续期,是指债券的平均到期时间,从现值角度度量了债券现金流的加权平均年限,即债券投资者收回其全部本金和利息的平均时间。
2.零息债券麦考利久期等于期限。
3.麦考利久期公式:Dmac=-(△P/△y)(1+y)/p。
修正的麦考利久期等于麦考利久期除以(1+y),即:
⑦ 债券久期如何计算
债券久期是债券投资的专业术语,反映的是债券价格相对市场利率正常的波动敏感程度,也就是债券持有到期时间。久期越长,债券对利率敏感度越高,其对应风险也越大。
债券久期计算公式有三种,分别是:
公式一:
(7)永久性债券的久期扩展阅读:
债券是政府、企业、银行等债务人为筹集资金,按照法定程序发行并向债权人承诺于指定日期还本付息的有价证券。
债券(Bonds / debenture)是一种金融契约,是政府、金融机构、工商企业等直接向社会借债筹借资金时,向投资者发行,同时承诺按一定利率支付利息并按约定条件偿还本金的债权债务凭证。债券的本质是债的证明书,具有法律效力。债券购买者或投资者与发行者之间是一种债权债务关系,债券发行人即债务人,投资者(债券购买者)即债权人 。
债券是一种有价证券。由于债券的利息通常是事先确定的,所以债券是固定利息证券(定息证券)的一种。在金融市场发达的国家和地区,债券可以上市流通。在中国,比较典型的政府债券是国库券。
⑧ 债券的久期
所谓久期(Duration)是用来衡量债券持有者在收到现金付款之前,平均需要等待多长时间。期限为n年的零息票债券的久期就为n年,而期限为n年的附息票债券的久期则小于n年。
在债券投资里,久期被用来衡量债券或者债券组合的利率风险,一般来说,久期和债券的到期收益率成反比,和债券的剩余年限及票面利率成正比,对于一个普通的附息债券,如果债券的票面利率和其当前的收益率相当的话,该债券的久期就等于其剩余年限当一个债券是贴现发行的无票面利率债券,那么该债券的剩余年限就是其久期。债券的久期越大,利率的变化对该债券价格的影响也越大,因此风险也越大。在降息时,久期大的债券上升幅度较大;在升息时,久期大的债券下跌的幅度也较大。因此,投资者在预期未来升息时,可选择久期小的债券。在债券分析中久期已经超越了时间的概念,投资者更多地把它用来衡量债券价格变动对利率变化的敏感度,并且经过一定的修正,以使其能精确地量化利率变动给债券价格造成的影响。修正久期越大,债券价格对收益率的变动就越敏感,收益率上升所引起的债券价格下降幅度就越大,而收益率下降所引起的债券价格上升幅度也越大。
⑨ 请问债券的久期是什么怎么用通俗的语言说明白谢谢!
久期表示了债券或债券组合的平均还款期限,它是每次支付现金所用时间的加权平均值,权重为每次支付的现金流的现值占现金流现值总和的比率。
久期用D表示,久期越短, 风险越低;反之,久期长, 风险高。
拓展资料:
久期的计算有不同的方法。首先介绍最简单的一种,即平均期限(也称麦考利久期)。这种久期计算方法是将债券的偿还期进行加权平均,权数为相应偿还期的货币流量(利息支付)贴现后与市场价格的比值,即有:
D=1×w1+2×w2+…+n×wn
式中:
ci--第i年的现金流量(支付的利息或本金);
y--债券的到期收益率;
P--当前市场价格。
只有金融机构持有金融债券取得的利息收入才能免税,使得资金越来越只在金融机构之间流动,会进一步强化金融业为自己服务的倾向,不利于资金向实体经济流动。因此,建议对所有纳税人持有金融债券取得的利息免征增值税。
除了国债、地方政府债和金融债券外,债券还包括各类企业债券,包括企业债券、公司债券、短期融资券、中期票据、中小企业集合票据和非公开定向债务融资工具等(以下统称企业债券)。根据现行增值税政策规定,对纳税人持有各类企业债券的利息收入,无论是金融机构持有还是非金融机构持有,一律征收增值税。