① 什么是久期在债券中起到什么作用他的计算公式为
生存分析,专门用来做这个的,它估计出生存时间的分布,然后当然就可以计算平均年限了。
② 息票利率为5%,剩余期限为2年的平价发行债券的久期是多少
这个题目出得好,题干简洁,直接考概念。
我们设票面为100元,则息票为5元,还需假设每年年底付息1次,因平价发行,市场利率也是5%,市场价格也是100元。
久期=( 5*1/(1+5%) + 5*2/(1+5%)^2 + 100*2/(1+5%)^2 )/100=1.952380952
久期约为1.95
③ 为什么债券的息票率越高,久期越短
楼主啊,要是你把久期公式的其它部分不变,只是把息票率提高,久期当然变大了,但是,你想想,要是除了息票率其它都相同的债券,他们的市价会一样吗?算久期的时候分母上是债券市价,息票率高,市价也高,分母变大了,久期到底变大还是变小就不能确定,就要靠数学上的推导,那么,书上的结论就是经过数学推导的结论,久期变短
统一公债就是永久债券,永不返还本金,那你就要把久期计算公式带进去,求一个无穷级数的和,算出来就是1+1/r
直接债券就是零息票债券,到期之前没有利息支付,你也把公式带进去,只有最后一期支付本金,算出来就是债券的到期时间
④ 一个关于债券久期的计算问题
债券息票为10元,价格用excel计算得,96.30元
久期=(1*10/(1+11%)^1+2*10/(1+11%)^2+3*10/(1+11%)^3+4*10/(1+11%)^4+5*10/(1+11%)^5+5*100/(1+11%)^5)/96.30=4.15
若利率下降1个百分点,债券价格上升=4.15*1%=4.15%
变化后债券价格=96.30*(1+4.15%)=100.30元
当然,以久期衡量的价格变化均为近似值,因为我们知道,当利率变为10%后,就等于票面利率,债券价格应该为100元整。
⑤ 久期的计算的计算公式是什么
如果市场利率是Y,现金流(X1,X2,...,Xn)的麦考利久期定义为:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期现金流的现值,D表示久期。
(5)息票债券久期公式扩展阅读:
久期定理
定理一:只有零息债券的马考勒久期等于它们的到期时间。
定理二:直接债券的马考勒久期小于或等于它们的到期时间。
定理三:统一公债的马考勒久期等于(1+1/y),其中y是计算现值采用的贴现率。
定理四:在到期时间相同的条件下,息票率越高,久期越短。
定理五:在息票率不变的条件下,到期时间越久,久期一般也越长。
定理六:在其他条件不变的情况下,债券的到期收益率越低,久期越长。
⑥ 债券久期如何计算
债券久期是债券投资的专业术语,反映的是债券价格相对市场利率正常的波动敏感程度,也就是债券持有到期时间。久期越长,债券对利率敏感度越高,其对应风险也越大。
债券久期计算公式有三种,分别是:
公式一:
(6)息票债券久期公式扩展阅读:
债券是政府、企业、银行等债务人为筹集资金,按照法定程序发行并向债权人承诺于指定日期还本付息的有价证券。
债券(Bonds / debenture)是一种金融契约,是政府、金融机构、工商企业等直接向社会借债筹借资金时,向投资者发行,同时承诺按一定利率支付利息并按约定条件偿还本金的债权债务凭证。债券的本质是债的证明书,具有法律效力。债券购买者或投资者与发行者之间是一种债权债务关系,债券发行人即债务人,投资者(债券购买者)即债权人 。
债券是一种有价证券。由于债券的利息通常是事先确定的,所以债券是固定利息证券(定息证券)的一种。在金融市场发达的国家和地区,债券可以上市流通。在中国,比较典型的政府债券是国库券。
⑦ 债券久期计算
求解:
时间t 息票额 折现因子1/(1+y) 折现值 时间加权值
1 8 0.91 7.28 7.28
2 8 0.8281 6.62 13.24
3 8 0.7536 6.03 18.09
3 100 0.7536 75.36 226.08
合计 95.29 264.69
久期=264.69/95.29=2.78
修正久期=久期/(1+0.1)=2.53
P'=-修正久期*债券价格*利率变化=-2.53*95.29*0.01=-2.41元,即央行调高利率到11%,债券价格下跌2.41元
⑧ 6年期10%息票率的平价债券久期怎么计算
实际上债券平价就是告诉了一个重要性质,债券市价等于票面价值100元,且债券内在收益率等于票面利率,即10%。根据久期计算法则是把每期现金流折现值乘以相应的时间之和除以现在市场价格。故此可以得到式子:[100*10%/(1+10%)+2*100*10%/(1+10%)^2+3*100*10%/(1+10%)^3+4*100*10%/(1+10%)^4+5*100*10%/(1+10%)^5+6*100*(1+10%)/(1+10%)^6]/100=4.79年
⑨ 债券久期和息票率如何用数学的方法证明它的反向关系
是由到期收益率的定义推导出来的。到期收益率公式知道吧,等式两边分别对到期收益率y求导,再在等式两边同除以价格p,就将其中一部分定义为D久期。
久期是一种测算债券发生现金流的平均期限的方法,可以用于测度债券对利率变化的敏感性。
弗雷得里克.麦考利根据债券的每次息票利息和本金支付时间的的加权平均来计算久期,称为麦考利久期
(MACAULAY'S DURATION)。具体的计算将每次债券现金流的现值除以债券价格得到每一期现金支付的权重,并将每一次现金流的时间同对应的权重相乘,最终合计出整个债券的久期。
久期是固定收入资产组合管理的关键概念有以下几个原因:
1、它是对资产组合实际平均期限的一个简单概括统计。
2、它被看做是资产组合免疫与利率风险的重要工具。
3、是资产组合利率敏感性的一个测度,久期相等的资产对于利率波动的敏感性一致。
到期时间、息票率、到期收益率是决定债券价格的关键因素,与久期存在以下的关系:
1、零息票债券的久期等于到它的到期时间。
2、到期日不变,债券的久期随息票据利率的降低而延长。
3、息票据利率不变,债券的久期随到期时间的增加而增加。
4、其他因素不变,债券的到期收益率较低时,息票债券的久期较长。
麦考利久期定理:关于麦考利久期与债券的期限之间的关系存在以下6个定理:定理1:只有贴现债券的麦考利久期等于它们的到期时间。定理2:直接债券的麦考利久期小于或等于它们的到期时间。只有仅剩最后一期就要期满的直接债券的麦考利久期等于它们的到期时间,并等于1。定理3:统一公债的麦考利久期等于(1+1/r),其中r是计算现值采用的贴现率。定理4:在到期时间相同的条件下,息票率越高,久期越短。定理5:在息票率不变的条件下,到期时期越长,久期一般也越长。定理6:在其他条件不变的情况下,债券的到期收益率越低,久期越长。