❶ 1)计算一个债券的修正久期、、请给出详细解答过程
修正久期=麦考利久期÷[1+(Y/N)],
因为,在本题中,1+Y/N=1+11.5%/2=1.0575;
所以,正久期=13.083/1.0575=12.37163,D是最合适的答案。
麦考林久期(MAC DUR),修正久期(MOD DUR)分零息与付息债券,对于零息MAC DUR=到期时间(T),修正久期=T/[1+(Y/N)],Y表示年利率,N表计算复利次数。
对于付息债券,MAC DUR=每期支付折现除以现值乘与期数,修正久期=MAC/[1+(Y/N)]。
修正久期是对于给定的到期收益率的微小变动,债券价格的相对变动与其麦考利久期的比例。这种比例关系是一种近似的比例关系,以债券的到期收益率很小为前提。是在考虑了收益率的基础上对麦考利久期进行的修正,是债券价格对于利率变动灵敏性的更加精确的度量。
当投资者判断当前的利率水平有可能上升时,集中投资于短期债券、缩短债券久期;当投资者判断当前的利率水平有可能下降时,拉长债券久期、加大长期债券的投资,帮助投资者在债市的上涨中获得更高的溢价。
修正久期定义:
△P/P≈-D*×△y+(1/2)*conv*(△y)^2
从这个式子可以看出,对于给定的到期收益率的微小变动,债券价格的相对变动与修正久期之间存在着严格的比例关系。所以说修正久期是在考虑了收益率项 y 的基础上对 Macaulay久期进行的修正,是债券价格对于利率变动灵敏性的更加精确的度量。
❷ 久期和债券的到期收益率是什么关系
票面利率、到期时间、初始收益率是影响债券价格的利率敏感性的三个重要因素,它们与久期之间的关系也表现出一些规则。
1.保持其它因素不变,票面利率越低,息票债券的久期越长。
票面利率越高时,早期的现金流现值越大,占债券价格的权重越高,使时间的加权平均值越低,即久期越短。
2.保持其它因素不变,到期收益率越低,息票债券的久期越长。
到期收益率越低时,后期的现金流现值越大,在债券价格中所占的比重也越高,时间的加权平均值越高,久期越长。
3.一般来说,在其它因素不变的情况下,到期时间越长,久期越长。
债券的到期时间越长,价格的利率敏感性越强,这与债券的到期时间越长久期越长是一致的。但是,久期并不一定总随着到期时间的增长而增长。
❸ 某债券的修正久期是3,如果市场利率变动1%,则债券价格将变动 A0.3% B2.97% C3% D1%
久期等于利率变动一个单位所引起的价格变动。如市场利率变动1%,债券的价格变动3,则久期是3。
所以是c
❹ 有关久期凸性的计算债券价格
第一问,以市场利率为6%为例,计算现在的合理债券价格=5/(1+6%)+5/(1+6%)^2+5/(1+6%)^3+5/(1+6%)^4+5/(1+6%)^5+100/(1+6%)^5=95.79元
其他各种利率,把6%换成不同的折现率,分别计算。
在市场利率为5%、5.5%、5.85%、6%、6.2%的时候,债券价格分别为:
100元、97.86元、96.40元、95.79元、94.97元。
第二问,以市场利率5%为例,市场利率上升5、10、50、100个基点,变化后的市场利率分别为5.05%、5.1%、5.5%和6%,套用以上公式,债券价格分别为:99.78元、99.57元、97.86元、95.79元。
修正久期公式为△P/P≈-D*×△y
我们考察市场利率从5%变化到5.05%这个微小变化,价格变化为-0.22,利率变化为0.05%
P=100,所以修正久期D*=4.4
根据这个修正久期,当市场利率从5%变化到5.1%的时候,债券价格将下降4.4*0.1=0.44元,即,从100元变为99.56元,实际价格变为99.57元,实际的差距是0.01元。
凸性设为C,则对于0.1个百分比的变化率,有
0.01元=1/2
*
C
*
0.1^2
解得C=2,凸度为2.
以上供参考。
❺ 什么是债券修正久期,具体怎么计算 / 债券
你好,修正久期指的是对于给定的到期收益率的微小变动,债券价格的相对变动值,即delta_P/P .修正久期大的债券 , 利率上升所引起价格下降幅度就越大,而利率下降所引起的债券价格上升幅度也越大。可见,同等要素条件下,修正久期小的债券比修正久期大的债券抗利率上升风险能力强;但相应地,在利率下降同等程度的条件下,获取收益的能力较弱。
计算公式为:
D*=D/(1+y/k) 其中D为麦考利久期,y为债券到期收益率,k为年付息次数。
❻ 什么是债券的久期,修正久期和基点价值
1、债券久期是指由于决定债券价格利率风险大小的因素主要包括偿还期和息票利率,因此需要找到某种简单的方法,准确直观地反映出债券价格的利率风险程度。
2、修正久期是对于给定的到期收益率的微小变动,债券价格的相对变动与其麦考利久期的比例。这种比例关系是一种近似的比例关系,以债券的到期收益率很小为前提。是在考虑了收益率的基础上对麦考利久期进行的修正,是债券价格对于利率变动灵敏性的更加精确的度量。
3、基点价格值是指到期收益率变化一个基点,也就是0.01个百分点时,债券价格的变动值。基点价格值是价格变化的绝对值,价格变化的相对值称作价格变动百分比,它是价格变化的绝对值相对于初始价格的百分比,用式子表示就是:价格变动百分比=基点价格值/初始价格。
应答时间:2020-12-09,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html
❼ 到期收益率和债券价格
选A
利率变动时,用久期和凸度估算债券价格变化,久期是线性的,凸度总是正的,对久期的修正,当利率下降时是助推价格上涨,当利率升高时是缓冲债券下跌,所以选A。
❽ 有效久期、麦考林久期和修正久期有什么区别
1、对时间价值的考虑不同:
修正久期在麦考利久期的基础上,考虑了久期的时间价值,可以说对麦考利久期的动态修正。
2、数学模型不同:
有效久期是债券价格曲线的切线,衡量的是区间价格变动的敏感程度,计算方法类似弹性可用于求已知价格变动的债券。
有效久期是指债券或其他金融工具的价格对利率敏感度的直接计算方法。即通过计算由利率的微小变动带来的债券价格差异而得出的价格变动百分比。
久期是表示对未来收入的加权等待时间,也是债券价格对利率的敏感程度。
有效久期是债券价格曲线的切线,衡量的是区间价格变动的敏感程度。
3、计算公式不同:
麦考林久期、修正久期分零息与付息债券,对于零息MAC DUR=到期时间(T),修正久期=T/[1+(Y/N)],Y表示年利率,N表计算复利次数.对于付息债券,MAC DUR=加权公式。就是每期支付折现除以现值乘与期数那公式。
修正久期=MAC/[1+(Y/N)],无期限债券,永续,特殊方法计算。
麦考利久期计算方法
麦考利久期等于债券每次息票或债券本金支付时间的加权平均 。
假设一张T年期债券,t时刻的现金支付为
(8)修正久期和债券价格扩展阅读:
久期用途
在债券分析中,久期已经超越了时间的概念。修正久期大的债券,利率上升所引起价格下降幅度就越大,而利率下降所引起的债券价格上升幅度也越大。可见,同等要素条件下,修正久期小的债券比修正久期大的债券抗利率上升风险能力强;但相应地,在利率下降同等程度的条件下,获取收益的能力较弱。
正是久期的上述特征给我们的债券投资提供了参照。当我们判断当前的利率水平存在上升可能,就可以集中投资于短期品种、缩短债券久期;而当我们判断当前的利率水平有可能下降,则拉长债券久期、加大长期债券的投资,这就可以帮助我们在债市的上涨中获得更高的溢价。
❾ 一个债券价格和麦考利久期的计算
修正久期=麦考利久期÷[1+(Y/N)],
因为这里,1+Y/N=1+11。5%/2=1。0575;
因此,正持续时间=13.83/1.0575=12.37163,D是最合适的答案。
MACDUR=maturity(T),修改后的存续期=T/[1+(Y/N)],Y为年利率,复利次数在N个表中计算。
对于付息债券,MACDUR=每期贴现率除以当前价值乘以期数,修改后的期限=MAC/[1+(Y/N)]。
如果市场利率是Y,现金流(X1,X2,...,Xn)的麦考利久期定义为:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期现金流的现值,D表示久期。
(9)修正久期和债券价格扩展阅读:
调整期是指特定债券的到期收益率相对于麦考利期的一个小变化。这个比率是基于债券到期收益率很小的前提下的近似比率。债券价格是衡量债券价格对利率变动敏感性的一个较为准确的指标。
当投资者判断当前的利率水平有可能上升时,他们将注意力集中在短期债券上,缩短债券的期限。当投资者判断当前利率可能会下降时,延长债券到期日并加大对长期债券的投资,有助于投资者在债券市场上涨时获得更高的溢价。
修订的期限定义:
P/P物质-D乘以y+conv(1/2)乘以y²
由该公式可以看出,对于给定的到期收益率变化较小的情况下,债券价格的相对变化与修正后的期限之间存在严格的比例关系。因此,考虑到Y收益率,调整期是衡量债券价格对利率变化的敏感性的更准确的指标。
❿ 债券修正久期
因为利率变动与资产价格负相关。
△P/P = -D/(1+r) * △r
所以负号表达了二者的负相关关系,望采纳