『壹』 期货开户 程序化交易 量化投资 交易策略 量化模型 开拓者 金字塔 CTP 交易策略 量化模型
文华
1上手快,简单易学,通用的脚本语言(类似于传统的股票软件指标语言)。提供基本自由度的功能实现。
2可进行历史数据回测。
3策略可加密。
4期货市场投资客户。
5刚开始接触程序化交易的投资客户。
6熟悉通用炒股软件指标编写的客户。
·开拓者
7功能强大,编程语言比较专业(类Pascal),可方便的编写自己的函数。提供高自由度的功能实现。
8可进行历史数据回测。
9策略可加密。
10期货市场投资客户。
11有一定编程能力支持的投资客户。
12交易策略比较复杂的投资客户。
·达钱+MC
13源于国外,经久考验,功能强大。
14全球标准的支持策略语言,EasyLanguage。
15编译及回测速度效能高,集成优异的策略回测和优化功能,提供详细、完整的策略绩效报告。
16支持自定义任一周期线图显示及策略回测
17支持Excel插件、完整数据管理接口(DDE,GlobalServer,……)
18期货市场投资客户。
19有一定编程能力支持的投资客户。
20交易策略比较复杂的投资客户。
21需要使用Excel软件辅助程序化交易的客户。
·东海潜龙
22编程语言专业,实现功能非常灵活。提供完全自由的功能实现。
23可进行历史数据回测。集群服务器模式,稳定性高。
24直连交易所,交易速度很快。
25可同时进行股票投资和期货投资,连接国内股票、期货六大交易。
26可定制交易界面。提供接口,可连接外部策略软件。
27股票市场、期货市场专业投资客户和机构投资者。
28对速度和稳定性有更高要求的客户(比如高交易频率的客户)。
29交易策略复杂,定制化要求程度高。
·金字塔
30国内独家支持图表程式化交易、后台程式化交易、高频交易、趋势线预警交易等多种自动交易模式。
31支持一键下单,图表下单等多种手工下单模式。
32程式化交易模型编写及操作兼容国内主流分析软件。
33支持套利、多帐户交易及动态止赢止损功能。
34支持板块指数、自定义数据等横向统计功能。
35基于OFFICE架构下的VBA二次开发功能。
『贰』 利用货币型基金和期货,怎么建模对比
可以试试调用真格量化的国债期货和商品期货数据进行比较研究,构建模型
『叁』 请问“数学模型”如何运用在期货投机交易中
金融数学,又称数理金融学等,是利用数学工具研究金融现象,通过数学模型进行定量分析,以求找到金融活动中潜在的规律,并用以指导实践。金融数学是现代数学与计算机技术在金融领域中的结合应用。目前,金融数学发展很快,是目前十分活跃的前言学科之一。
金融数学的发展曾两次引发了“华尔街革命”。上个世纪50年代初期,马克维茨提出证券投资组合理论,第一次明确地用数学工具给出了在一定风险水平下按不同比例投资多种证券,收益可能最大的投资方法,引发了第一次“华尔街革命”。
马克维茨也因此获得了1990年诺贝尔经济学奖。1973年,美国金融学家布莱克和舒尔斯用数学方法给出了期权定价模型,推动了期权交易的发展,期权交易很快成为世界金融市场的主要内容,成为第二次“华尔街革命”。2003年诺贝尔经济学奖第三次授予以数学为工具分析金融问题的美国经济学家恩格尔和英国经济学家格兰杰,以表彰他们分别用“随着时间变化易变性”和“共同趋势”两种新方法分析经济时间数列给经济学研究和经济发展带来巨大影响。
不仅仅是理论界在金融数学领域取得巨大的成就。实务投资派也运用金融数学模型在市场中取得了巨大的盈利。
数学教授出身的“模型先生”詹姆斯·西蒙斯(JamesSimons)连续两年在对冲基金经理人收入排行中位列第一。2005年,西蒙斯成为全球收入最高的对冲基金经理,净赚15亿美元,去年,他收入高达17亿美元,差不多是索罗斯的两倍。68岁的西蒙斯是世界级的数学家,也是最伟大的对冲基金经理之一。他24岁就出任哈佛大学数学系教授,曾与著名华裔数学家陈省身一同创立了Chern-Simons几何定律,该定律成为理论物理学的重要工具。西蒙斯和他的文艺复兴科技公司是华尔街一个彻底的异类,公司从不雇用华尔街人士,而是靠数学模型捕捉市场机会,用电脑作出交易决策,是这位超级投资者成功的秘诀。
“对积理论”也是用数学模型捕捉市场机会,量化资金管理,用计算机系统发出交易信号,通过大量的短线交易,达到稳定累盈的结果。
“数学模型”方法是针对或参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括的或近似地表述出来的一种数学结构。
采用“数学模型”做交易,相对于常用的技术分析、基本分析等方法有如下优势:
首先,交易更加精确量化。
技术分析、基本分析等方法的缺陷都是不能做到完全的精确量化。
技术分析主要是用来分析交易的进场、出场点的,是抉择交易时机的一种方法。技术分析理论的主要的代表有道氏理论、波浪理论、江恩法则等。主要分析方法有K线(日本线)理论、切线理论、形态理论、量价关系理论。主要的分析指标包括:趋势型指标、超买超卖型指标、人气型指标、大势型指标等内容。技术指标大多是线型的公式来表达价格涨落与历史价格成交量之间的关系。由于价格运动的复杂性用线型公式是无法概括表述的,所以存在技术指标时好时坏的现象。用几套技术指标叠加做出的系统,同样解释不了价格的运动。因为大多技术指标编制的思路及出发点雷同,趋向性一致,所以造成了好用都好用,不好用都无奈的现象。技术分析是成千上万证券市场投资者经验的结晶,它更像一门艺术。其一,在它的各种理论体系中,从定义到规则,都带有明显的经验总结色彩,不具备严格的数学推理过程;其二,它包含的理论很多,每位技术分析家都有不同的见地,这些分支理论并不能形成一整套相互辉映的理论体系。任何一种技术分析方法都不能完全适应于市场,每一种方法都有自己的盲点。
使用技术分析、基本分析无法精确量化交易。“数学模型”是采用离散采样的方法,对数据进行统计分析。根据证券市场的特性,价格是离散型的随机变量。“数学模型”会将随机变量的所有可能取值及相应的概率描述出来,模拟离散型随机变量的概率分布。通过概率进行资金分配,能够量化每笔交易手数。对交易的把控更加精确量化。
其次,能够克服人性在交易时的弱点。
在交易当中,最可怕莫过于人性的弱点。人的“贪婪”和“恐惧”在交易的过程当中会毫无遗漏的表现出来。有盈利的时候“惜卖”,亏损后又“死抱”;容易受到周边议论的影响,等等这些都会造成交易的随意性,导致亏损。用“数学模型”各种规则都是固定量化的,计算出来的结果也是确定、唯一的,能够避免投资者在交易时主观的判断。我们所要做的就是相信系统,严格执行。
下面,我们对“数学模型”类交易方法的特点进行总结,深一步讨论“数学模型”在交易中的应用。
1.认为价格的运动是随机与有序并存。它并不是完全随机,也没有固定的规律,它的运动具有一定的“人为特征表象”。整体而言,市场是有效的,但仍存在短暂的或局部的市场无效性,可以提供交易机会。
2.主要通过对历史数据的离散采样统计,找出金融产品价格、宏观经济、市场指标、技术指标等各种指标间变化的数学关系,发现市场目前存在的微小获利机会,并通过杠杆比率进行快速而大规模的交易获利。
3.通过高频次且快速的日内短线交易来捕捉稍纵即逝的机会。通过大量的交易次数对冲风险,累积盈利。
4.要求市场具有高活跃度和流动性。要求交易品种价格的运动具有连续性,以及成交量的活跃性。这一点主要是为了保证交易的可成交性。
5.运用现代计算机技术将“数学模型”转化为交易系统,通过计算机的海量运算能力实现应用。
『肆』 期货交易模型如何建立
这是一个复杂的程序设计问题,你可以去西部汇市下载一个期货交易模型,然后加载到相对应的软件里测试,如果觉得效果满意可以实盘运行,前期我就去下载了一个期货交易模型,效果不用多说自已可以亲自去体验。另有一些建立期货交易模型的相关资料及免费指标你可以了解。
『伍』 上海原油期货没有历史数据怎么解决建模的问题
圈内的方法是参考美原油交易,实际上这没有考虑到人民币汇率的波动。
沉淀资金太少,都没做这个
『陆』 交易模型的模拟检验
模拟是对建立的系统或决策问题的数学或逻辑模型进行试验,以获得对系统行为的认识或帮助解决决策问题的过程。模拟的主要优点在于检验交易模型中的问题或系统的任何假设模型化的能力,使它成为最灵活的工具。判断交易模型是否有实用价值,最简单、最可靠的途径是通过在尽量多的市场里,进行长时间的测试。为了减少交易模型的检测成本,检测先从模拟开始。交易模型检验的基本原则是“模拟实战”,一切条件都要接近实战条件,使检验结果尽可能真实,因为只有这样才能使交易模型有真正的使用价值。
1.突发事件
在检验过程中一定要包含有突发事件(包括涨跌停板),因为除了要检验交易模型在正常情况下的运作情况,还要有应付突发事件的能力,不能因为是“小概率”事件而忽略了突发事件的影响,应遵循“模拟实战”的基本原则。一个成熟的交易模型,即使不能捕捉到突发事件带来的超额利润,也应该有能力抵抗突发事件带来的风险。
2.检验的信息和数据
对于基本分析交易模型,需要有完善的信息数据库,信息的来源随着科技的发达,互联网的不断应用,信息的收集比以前方便了许多,因此要整理完善好信息数据库相对较容易。对于技术分析交易模型,由于期货基金运作的是期货品种,期货品种的数据有它的独特性,欧美期货的数据有各自不同的特点,如伦敦金属的期货数据没有出现“断层现象”,使用计算机检验就不会有问题,而国内的期货数据源袭了美式期货数据,不同的交易合约换月时会出现“数据断层”,不能像股票一样使用简单的除权处理,因此要通过交易模型的检验首先对数据进行处理。
实际合约数据:按照实际的合约交易数据,缺点是十分明显的,因为国内期货合约目前只有1年的周期,因此在检验时数据周期就显得太短了,而且在相当长的交易时间内合约的成交量并不活跃,流动性小,不具有代表意义。
即月连续数据:按合约交割日连接,连接起来形成连续数据。这样产生的连续数据优点是具有实际交易性,但在实战交易中会产生差别,交割前成交不活跃,缺乏代表性,像上海铜一般都是交割月后第四、五个合约成交活跃;缺点则是会产生“断层现象”,对检验结果产生重大的失真。
价差调整连续数据:按照一定的规则,在进入交割前一定时间内连接随后的合约数据,这里的时间参数X,要根据不同品种来确定,上海铜要比大连大豆和郑州小麦的时间参数X要大,将调整时两个合约的价差累计下来,最后将累计价差加减到数据列中,得出最终的期货数据。特别注意的是,经过调整的期货数据可能会出现负值,要做相应的数据调整,但这不会影响使用计算机检测的交易结果。优点是能长时间反映价格变化水平;缺点是数据不能直接应用于实际交易中,需要通过转换。
权重连续数据:按照固定的时间连接随后的合约数据,同时按近月大、远月小或是按成交量与持仓量的比重计算连续价格,随着时间的推移,较近的合约的权重越来越小,而远月的权重越来越大。优点是消除了数据“断层现象”,可以选取多个活跃月份,这样就可以更真实地贴近实战交易;缺点也是数据不能直接应用于实际交易中,需要通过转换。
以上四种数据处理方式各有所长,要根据使用者的情况选用。对于短线使用者,实际合约数据较好,而对于中长线的使用者连续数据才能真实反映实际中长期的盈亏情况,并进行计算机的检测。在对交易模型的检测中,为了保证检验结果的可靠性和稳定性,需要足够的统计样本数据,按照统计学的大样本要求,样本数量要多于30个。以短线为主的交易模型,数据时间不能短于1年的分时数据,使用日线数据检测的不能少于3年以上,基本分析交易模型的数据要求要经历一个以上的循环周期。
『柒』 文华财经的tick模型是什么意思,期货
tick是期货行情的最小单位,我国期货品种一秒钟报两次价,tick就是把每个报价都显示出来,图形上相当于闪电图。所以一分钟有120个数据。tick在文化里面是非尝微观的交易,相当于每个报价都计算进去了。对于微观突破比较有效,但是文华上通过这个赚钱的还不多,因为规律表达很难,且品种规律一定时期都会变化,基本还是靠普通模型。
『捌』 期货程序化交易中的基本面可以量化吗 能不能把基本面量化成交易模型
基本面交易很大程度上也是靠经验,要靠多年的积累,因为基本面交易也包含了很多因素,包括供求平衡关系、市场结构、微观因素、宏观因素等等有很多因素。这个交易经验或者说交易人,这种交易经验可复制性又非常差,就是想带一个成熟的交易员要经历很长的时间,如果靠基本面交易,特别是靠商品期货,一个人所带的资金就很有限,到一定规模我就很难以再扩大。
在这种市场情况下,要想开展一部分程序化交易或者量化投资,一定要有所区别,因为现在市场上由于期货公司或者现在期货行业发展的现状,很多年轻人快速进入到量化投资这个领域,对基本面分析或者说交易经验比较少的情况下,做出来的交易模型大部分是纯数学化的模型。实际上量化做模型的背后有大量的数据采集,这个数据采集也包含了很多宏观、微观方面的一些数据,将这些数据整理、加工进行人工智能的分析。
『玖』 有没有做农产品期货高频交易数据跨期套利的利润咋样自己研究的模型有哪些需要注意的问题
做期货跨期套利,主要是要熟悉单个品种各个月份之间的正常价差,如存储成本,资金成本,然后还要一个比较好用的期货交易软件,适合自己的才是最好的,还有最重要的就是手续费了!逃离利润就不多,手续费高了做着也没意思!
『拾』 什么是期货量化交易与程序化交易一样的吗
量化投资理论是借助现代统计学和数学的方法,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,用数量模型验证及固化这些规律和策略,然后严格执行已固化的策略来指导投资,以求获得可持续的、稳定且高于平均的超额回报。
量化从一开始也不是作为定性的对立面而提出的方法,它是将定性分析中的技术分析策略用模型固化,替代过程中可以用电脑进行的部分并将其效用极大优化。量化交易策略几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
程序化交易将具体的交易时机,仓位,止损止盈,获利标准编写进交易程序中,也可能独立于程序外。程序化只是交易执行的一种方式。