导航:首页 > 理财保险 > 大数据金融理财产品

大数据金融理财产品

发布时间:2021-07-31 08:43:26

A. 互联网金融理财产品都是指什么

好,我想你是问网上银行的理财产品,还有p2p的理财产品,互联网金融含义广阔。所以你问理财产品是一个很广的概念。
根据常规回答。包括微众银行这种依靠大数据的网上银行,比如创赢这种p2p平台。比如像支付宝这种第三方支付平台,比如像比特币这种数字货比,还有众筹,大数据金融等

B. 如何利用大数据做金融风控

大数据能够进行数据变现的商业模式目前就是两个,一个是精准营销,典型的场景是商品推荐和精准广告投放,另外一个是大数据风控,典型的场景是互联网金融的大数据风控。

金融的本质是风险管理,风控是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据风控识别欺诈用户及评估用户信用等级。

传统金融的风控主要利用了信用属性强大的金融数据,一般采用20个纬度左右的数据,利用评分来识别客户的还款能力和还款意愿。信用相关程度强的数据 纬度为十个左右,包含年龄、职业、收入、学历、工作单位、借贷情况、房产,汽车、单位、还贷记录等,金融企业参考用户提交的数据进行打分,最后得到申请人 的信用评分,依据评分来决定是否贷款以及贷款额度。其他同信用相关的数据还有区域、产品、理财方式、行业、缴款方式、缴款记录、金额、时间、频率等。普惠在线

互联网金融的大数据风控并不是完全改变传统风控,实际是丰富传统风控的数据纬度。互联网风控中,首先还是利用信用属性强的金融数据,判断借款人的还 款能力和还款意愿,然后在利用信用属性较弱的行为数据进行补充,一般是利用数据的关联分析来判断借款人的信用情况,借助数据模型来揭示某些行为特征和信用 风险之间的关系。

互联网金融公司利用大数据进行风控时,都是利用多维度数据来识别借款人风险。同信用相关的数据越多地被用于借款人风险评估,借款人的信用风险就被揭示的更充分,信用评分就会更加客观,接近借款人实际风险。

常用的互联网金融大数据风控方式有以下几种:

验证借款人身份
验证借款人身份的五因素认证是姓名、手机号、身份证号、银行卡号、家庭地址。企业可以借助国政通的数据来验证姓名、身份证号,借助银联数据来验证银行卡号和姓名,利用运营商数据来验证手机号、姓名、身份证号、家庭住址。

如果借款人是欺诈用户,这五个信息都可以买到。这个时候就需要进行人脸识别了,人脸识别等原理是调用国政通/公安局 API接口,将申请人实时拍摄的照片/视频同客户预留在公安的身份证进行识别,通过人脸识别技术验证申请人是否是借款人本人。

其他的验证客户的方式包括让客户出示其他银行的信用卡及刷卡记录,或者验证客户的学历证书和身份认证。
分析提交的信息来识别欺诈

大部分的贷款申请都从线下移到了线上,特别是在互联网金融领域,消费贷和学生贷都是以线上申请为主的。
线上申请时,申请人会按照贷款公司的要求填写多维度信息例如户籍地址,居住地址,工作单位,单位电话,单位名称等。如果是欺诈用户,其填写的信息往 往会出现一些规律,企业可根据异常填写记录来识别欺诈。例如填写不同城市居住小区名字相同、填写的不同城市,不同单位的电话相同、不同单位的地址街道相 同、单位名称相同、甚至居住的楼层和号码都相同。还有一些填写假的小区、地址和单位名称以及电话等。

如果企业发现一些重复的信息和电话号码,申请人欺诈的可能性就会很高。

分析客户线上申请行为来识别欺诈

欺诈用户往往事先准备好用户基本信息,在申请过程中,快速进行填写,批量作业,在多家网站进行申请,通过提高申请量来获得更多的贷款。

企业可以借助于SDK或JS来采集申请人在各个环节的行为,计算客户阅读条款的时间,填写信息的时间,申请贷款的时间等,如果这些申请时间大大小于 正常客户申请时间,例如填写地址信息小于2秒,阅读条款少于3秒钟,申请贷款低于20秒等。用户申请的时间也很关键,一般晚上11点以后申请贷款的申请 人,欺诈比例和违约比例较高。

这些异常申请行为可能揭示申请人具有欺诈倾向,企业可以结合其他的信息来判断客户是否为欺诈用户。
利用黑名单和灰名单识别风险

互联网金融公司面临的主要风险为恶意欺诈,70%左右的信贷损失来源于申请人的恶意欺诈。客户逾期或者违约贷款中至少有30%左右可以收回,另外的一些可以通过催收公司进行催收,M2逾期的回收率在20%左右。

市场上有近百家的公司从事个人征信相关工作,其主要的商业模式是反欺诈识别,灰名单识别,以及客户征信评分。反欺诈识别中,重要的一个参考就是黑名单,市场上领先的大数据风控公司拥有将近1000万左右的黑名单,大部分黑名单是过去十多年积累下来的老赖名单,真正有价值的黑名单在两百万左右。

黑名单来源于民间借贷、线上P2P、信用卡公司、小额借贷等公司的历史违约用户,其中很大一部分不再有借贷行为,参考价值有限。另外一个主要来源是催收公司,催收的成功率一般小于于30%(M3以上的),会产生很多黑名单。

灰名单是逾期但是还没有达到违约的客户(逾期少于3个月的客户),灰名单也还意味着多头借贷,申请人在多个贷款平台进行借贷。总借款数目远远超过其还款能力。

黑名单和灰名单是很好的风控方式,但是各个征信公司所拥有的名单仅仅是市场总量的一部分,很多互联网金融公司不得不接入多个风控公司,来获得更多的 黑名单来提高查得率。央行和上海经信委正在联合多家互联网金融公司建立统一的黑名单平台,但是很多互联网金融公司都不太愿意贡献自家的黑名单,这些黑名单 是用真金白银换来的教训。另外如果让外界知道了自家平台黑名单的数量,会影响其公司声誉,降低公司估值,并令投资者质疑其平台的风控水平。

利用移动设备数据识别欺诈
行为数据中一个比较特殊的就是移动设备数据反欺诈,公司可以利用移动设备的位置信息来验证客户提交的工作地和生活地是否真实,另外来可以根据设备安装的应用活跃来识别多头借贷风险。

欺诈用户一般会使用模拟器进行贷款申请,移动大数据可以识别出贷款人是否使用模拟器。欺诈用户也有一些典型特征,例如很多设备聚集在一个区域,一起 申请贷款。欺诈设备不安装生活和工具用App,仅仅安装和贷款有关的App,可能还安装了一些密码破译软件或者其他的恶意软件。

欺诈用户还有可能不停更换SIM卡和手机,利用SIM卡和手机绑定时间和频次可以识别出部分欺诈用户。另外欺诈用户也会购买一些已经淘汰的手机,其机器上面的操作系统已经过时很久,所安装的App版本都很旧。这些特征可以识别出一些欺诈用户。

利用消费记录来进行评分

大会数据风控除了可以识别出坏人,还可以评估贷款人的还款能力。过去传统金融依据借款人的收入来判断其还款能力,但是有些客户拥有工资以外的收入,例如投资收入、顾问咨询收入等。另外一些客户可能从父母、伴侣、朋友那里获得其他的财政支持,拥有较高的支付能力。

按照传统金融的做法,在家不工作照顾家庭的主妇可能还款能力较弱。无法给其提供贷款,但是其丈夫收入很高,家庭日常支出由其太太做主。这种情况,就需要消费数据来证明其还款能力了。

常用的消费记录由银行卡消费、电商购物、公共事业费记录、大宗商品消费等。还可以参考航空记录、手机话费、特殊会员消费等方式。例如头等舱乘坐次数,物业费高低、高尔夫球俱乐部消费,游艇俱乐部会员费用,奢侈品会员,豪车4S店消费记录等消费数据可以作为其信用评分重要参考。

互联网金融的主要客户是屌丝,其电商消费记录、旅游消费记录、以及加油消费记录都可以作为评估其信用的依据。有的互联金融公司专门从事个人电商消费数据分析,只要客户授权其登陆电商网站,其可以借助于工具将客户历史消费数据全部抓取并进行汇总和评分。

参考社会关系来评估信用情况

物以类聚,人与群分。一般情况下,信用好的人,他的朋友信用也很好。信用不好的人,他的朋友的信用分也很低,

参考借款人常联系的朋友信用评分可以评价借款人的信用情况,一般会采用经常打电话的朋友作为样本,评估经常联系的几个人(不超过6六个人)的信用评分,去掉一个最高分,去掉一个最低分,取其中的平均值来判断借款人的信用。这种方式挑战很大,只是依靠手机号码来判断个人信用可信度不高。一般仅仅用于反欺诈识别,利用其经常通话的手机号在黑名单库里面进行匹配,如果命中,则此申请人的风险较高,需要进一步进行调查。

参考借款人社会属性和行为来评估信用

参考过去互联网金融风控的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄大的人比年龄低的人贷款违约率要高,其中50岁左右的贷款人违 约率最高,30岁左右的人违约率最低。贷款用于家庭消费和教育的贷款人,其贷款违约率低;声明月收入超过3万的人比声明月收入低于1万5千的人贷款违约率 高;贷款次数多的人,其贷款违约率低于第一次贷款的人。

经常不交公共事业费和物业费的人,其贷款违约率较高。经常换工作,收入不稳定的人贷款违约率较高。经常参加社会公益活动的人,成为各种组织会员的人,其贷款违约率低。经常更换手机号码的人贷款违约率比一直使用一个电话号码的人高很多。

午夜经常上网,很晚发微博,生活不规律,经常在各个城市跑的申请人,其带贷款违约率比其他人高30%。刻意隐瞒自己过去经历和联系方式,填写简单信 息的人,比信息填写丰富的人违约概率高20%。借款时间长的人比借款时间短短人,逾期和违约概率高20%左右。拥有汽车的贷款人比没有汽车的贷款人,贷款 违约率低10%左右。

利用司法信息评估风险

涉毒涉赌以及涉嫌治安处罚的人,其信用情况不是太好,特别是涉赌和涉毒人员,这些人是高风险人群,一旦获得贷款,其贷款用途不可控,贷款有可能不会得到偿还。

寻找这些涉毒涉赌的嫌疑人,可以利用当地的公安数据,但是难度较大。也可以采用移动设备的位置信息来进行一定程度的识别。如果设备经常在半夜出现在 赌博场所或赌博区域例如澳门,其申请人涉赌的风险就较高。另外中国有些特定的地区,当地的有一部分人群从事涉赌或涉赌行业,一旦申请人填写的居住地址或者 移动设备位置信息涉及这些区域,也要引起重视。涉赌和涉毒的人员工作一般也不太稳定或者没有固定工作收入,如果申请人经常换工作或者经常在某一个阶段没有 收入,这种情况需要引起重视。涉赌和涉毒的人活动规律比较特殊,经常半夜在外面活动,另外也经常住本地宾馆,这些信息都可以参考移动大数据进行识别。

总之,互联网金融的大数据风控采用了用户社会行为和社会属性数据,在一定程度上补充了传统风控数据维度不足的缺点,能够更加全面识别出欺诈客户,评价客户的风险水平。互联网金融企业通过分析申请人的社会行为数据来控制信用风险,将资金借给合格贷款人,保证资金的安全。

C. 国内有哪些理财产品是利用大数据分析的,钱大人算不算

钱大人算的,钱大人是国内首家基于大数据量化投资针对二级市场的互联网资产投资产品。目前,钱大人上主要的投资对象是股票

D. 如何用大数据分析金融数据

有大数据分析工具的,免费的,你找一下大数据魔镜。

E. 什么是大数据金融

就是建立在大规模数据信息上的金融行为。例如网络推出大数据炒股理财。

F. 金融行业大数据是怎么做的

如‍中投在线‍网站很多基于大数据处理的,该网站的理财‍产‍品‍实在太多了,都是用大数据‍来‍做‍批‍处理的。

G. 互联网金融产品有哪些

1、众筹

众筹大意为大众筹资或群众筹资,是指用团购预购的形式,向网友募集项目资金的模式。众筹的本意是利用互联网和SNS传播的特性,让创业企业、艺术家或个人对公众展示他们的创意及项目,争取大家的关注和支持,进而获得所需要的资金援助。

众筹平台的运作模式大同小异——需要资金的个人或团队将项目策划交给众筹平台,经过相关审核后,便可以在平台的网站上建立属于自己的页面,用来向公众介绍项目情况。

2、P2P网贷

P2P(Peer-to-Peerlending),即点对点信贷。

P2P网贷是指通过第三方互联网平台进行资金借、贷双方的匹配,需要借贷的人群可以通过网站平台寻找到有出借能力并且愿意基于一定条件出借的人群,帮助贷款人通过和其他贷款人一起分担一笔借款额度来分散风险,也帮助借款人在充分比较的信息中选择有吸引力的利率条件。

两种运营模式,第一是纯线上模式,其特点是资金借贷活动都通过线上进行,不结合线下的审核。通常这些企业采取的审核借款人资质的措施有通过视频认证、查看银行流水账单、身份认证等。

第二种是线上线下结合的模式,借款人在线上提交借款申请后,平台通过所在城市的代理商采取入户调查的方式审核借款人的资信、还款能力等情况。

3、第三方支付

第三方支付(Third-PartyPayment)狭义上是指具备一定实力和信誉保障的非银行机构,借助通信、计算机和信息安全技术,采用与各大银行签约的方式,在用户与银行支付结算系统间建立连接的电子支付模式。

根据央行2010年在《非金融机构支付服务管理办法》中给出的非金融机构支付服务的定义,从广义上讲第三方支付是指非金融机构作为收、付款人的支付中介所提供的网络支付、预付卡、银行卡收单以及中国人民银行确定的其他支付服务。

第三方支付已不仅仅局限于最初的互联网支付,而是成为线上线下全面覆盖,应用场景更为丰富的综合支付工具。

4、数字货币

除去蓬勃发展的第三方支付、P2P贷款模式、小贷模式、众筹融资、余额宝模式等形式,以比特币为代表的互联网货币也开始露出自己的獠牙。

以比特币等数字货币为代表的互联网货币爆发,从某种意义上来说,比其他任何互联网金融形式都更具颠覆性。在2013年8月19日,德国政府正式承认比特币的合法“货币”地位,比特币可用于缴税和其他合法用途,德国也成为全球首个认可比特币的国家。

这意味着比特币开始逐渐“洗白”,从极客的玩物,走入大众的视线。也许,它能够催生出真正的互联网金融帝国。

比特币炒得火热,也跌得惨烈。无论怎样,这场似乎曾经离我们很遥远的互联网淘金盛宴已经慢慢走进我们的视线,它让人们看到了互联网金融最终极的形态就是互联网货币。所有的互联网金融只是对现有的商业银行、证券公司提出挑战,将来发展到互联网货币的形态就是对央行的挑战。

也许比特币会颠覆传统金融成长为首个全球货币,也许它会最终走向崩盘,不管怎样,可以肯定的是,比特币会给人类留下一笔永恒的遗产。

5、大数据金融

大数据金融是指集合海量非结构化数据,通过对其进行实时分析,可以为互联网金融机构提供客户全方位信息,通过分析和挖掘客户的交易和消费信息掌握客户的消费习惯,并准确预测客户行为,使金融机构和金融服务平台在营销和风险控制方面有的放矢。

基于大数据的金融服务平台主要指拥有海量数据的电子商务企业开展的金融服务。大数据的关键是从大量数据中快速获取有用信息的能力,或者是从大数据资产中快速变现利用的能力。因此,大数据的信息处理往往以云计算为基础。

6、信息化金融机构

所谓信息化金融机构,是指通过采用信息技术,对传统运营流程进行改造或重构,实现经营、管理全面电子化的银行、证券和保险等金融机构。金融信息化是金融业发展趋势之一,而信息化金融机构则是金融创新的产物。

从金融整个行业来看,银行的信息化建设一直处于业内领先水平,不仅具有国际领先的金融信息技术平台,建成了由自助银行、电话银行、手机银行和网上银行构成的电子银行立体服务体系,

而且以信息化的大手笔——数据集中工程在业内独领风骚,其除了基于互联网的创新金融服务之外,还形成了“门户”“网银、金融产品超市、电商”的一拖三的金融电商创新服务模式。

7、金融门户

互联网金融门户(ITFIN)是指利用互联网进行金融产品的销售以及为金融产品销售提供第三方服务的平台。它的核心就是“搜索比价”的模式,采用金融产品垂直比价的方式,将各家金融机构的产品放在平台上,用户通过对比挑选合适的金融产品。

互联网金融门户多元化创新发展,形成了提供高端理财投资服务和理财产品的第三方理财机构,提供保险产品咨询、比价、购买服务的保险门户网站等。这种模式不存在太多政策风险,因为其平台既不负责金融产品的实际销售,也不承担任何不良的风险,同时资金也完全不通过中间平台。

H. 金融科技和金融大数据是什么app呢有什么好的金融app推荐

是科技服务金融产品,主要是利用前沿科技服务用户。现在比较先进的金融APP就是中新经纬、网易有钱、余额宝等等。随着现代群体收入逐渐增加,人们开始将目光放在了投资理财上。但是缺乏金融知识,如何在一定程度上降低投资理财风险?不仅可以跟随专业的投资理财人士,还可以选择金融APP。因为投资理财的种类非常多,有基金、股票以及银行、记账理财等等,所以要根据不同需求选择不同的金融APP。

中新经纬

此APP能为用户提供比较优质的财经新闻和信息,并且还能开展线下活动、掌握比较正式的财经资源,其影响力非常强。其实如今,社会群体逐渐提高了对理财投资的重视程度,无论是专业的金融人士还是非专业的金融人士都大量涌现。所以选择更加优秀的金融APP,能为大家解决很多金融难题。除了上述所说的几种APP,海域陆金所、人人贷、壹钱包、随手记等等。所以在激烈的市场竞争中,用户一定要根据自身需求选择,并且还要认真挑选金融产品。

阅读全文

与大数据金融理财产品相关的资料

热点内容
地狱解剖类型电影 浏览:369
文定是什么电影 浏览:981
什么影院可以看VIP 浏览:455
受到刺激后身上会长樱花的图案是哪部电影 浏览:454
免费电影在线观看完整版国产 浏览:122
韩国双胞胎兄弟的爱情电影 浏览:333
法国啄木鸟有哪些好看的 浏览:484
能看片的免费网站 浏览:954
七八十年代大尺度电影或电视剧 浏览:724
欧美荒岛爱情电影 浏览:809
日本有部电影女教师被学生在教室轮奸 浏览:325
畸形丧尸电影 浏览:99
美片排名前十 浏览:591
韩国电影新妈妈女主角叫什么 浏览:229
黑金删减了什么片段 浏览:280
泰国宝儿的电影有哪些 浏览:583
3d左右格式电影网 浏览:562
跟师生情有关的电影 浏览:525
恐怖鬼片大全免费观看 浏览:942
电影里三节是多长时间 浏览:583