⑴ 大数据分析系统有什么好处
现在网上的信息量十分巨大,仅依靠人工的方法难以应对网上海量信息的收集和处理,需要加强相关信息技术的研究,形成一套自动化的网络舆情分析系统,及时应对网络舆情,由被动防堵,化为主动梳理、引导。这样的系统应该具备以下功能:
首先是舆情分析引擎。这是舆情分析系统的核心功能,包括:1、热点话题、敏感话题识别,可以根据新闻出处权威度、评论数量、发言时间密集程度等参数,识别出给定时间段内的热门话题。利用关键字布控和语义分析,识别敏感话题。2、倾向性分析,对于每个话题,对每个发信人发表的文章的观点、倾向性进行分析与统计。3、主题跟踪,分析新发表文章、贴子的话题是否与已有主题相同。4、自动摘要,对各类主题,各类倾向能够形成自动摘要。5、趋势分析,分析某个主题在不同的时间段内,人们所关注的程度。6、突发事件分析,对突发事件进行跨时间、跨空间综合分析,获知事件发生的全貌并预测事件发展的趋势。7、报警系统,对突发事件、涉及内容安全的敏感话题及时发现并报警。8、统计报告,根据舆情分析引擎处理后的结果库生成报告,用户可通过浏览器浏览,提供信息检索功能,根据指定条件对热点话题、倾向性进行查询,并浏览信息的具体内容,提供决策支持。
其次是自动信息采集功能。现有的多瑞科信息采集技术主要是通过网络页面之间的链接关系,从网上自动获取页面信息,并且随着链接不断向整个网络扩展。目前,一些搜索引擎使用这项技术对全球范围内的网页进行检索。类似多瑞科舆情数据分析站系统舆情监控系统应能根据用户信息需求,设定主题目标,使用人工参预和自动信息采集结合的方法完成信息收集任务。
第三是数据清理功能。对收集到的信息进行预处理,如格式转换、数据清理,数据统计。对于新闻评论,需要滤除无关信息,保存新闻的标题、出处、发布时间、内容、点击次数、评论人、评论内容、评论数量等。对于论坛BBS,需要记录帖子的标题、发言人、发布时间、内容、回帖内容、回帖数量等,最后形成格式化信息。条件允许时,可直接针对服务器的数据库进行操作。
好的舆情分析报告需要有以下特点:
一、热点识别功能
根据新闻出处权威度、 评论数量、发言时间密集程度等参数,识别出给定时间段内的热门话题。
二、主题跟踪功能
实时热点根据对热点问题的信息来源、转载量、转载地址、地域分布、信息发布者等相关信息元素的跟踪,进行倾向性与趁势分析。
三、倾向性分析功能
根据信息的转载量、评论的回言信息时间密集度,对信息的阐述的观点、主旨进行倾向性分析。
四、趋势分析功能
根据信息的时间、区域分布,转载量与转载网站类型等,对监控词汇和时间、空间的分布关系进行阶段性的分析。
五、信息自动摘要功能
根据监控系统自动抽取的能准确代表文章主题思想的智能摘要,以快速了解文章大意与核心内容,提高用户信息利用效率。
六、预测报警功能
根据信息的语料库与报警监控信息库进行分析,以确保信息的舆论健康发展。
七、事件分析功能
根据对热点信息的倾向分析、趁势分析和整体分析,以监听信息的突发性。
八、 统计报告功能
根据多瑞科舆情数据分析站系统舆情分析引擎处理后的结果库生成报告,用户可浏览信息的具体内容,做出最佳决策。
⑵ 公司业务数据分析有什么意义呢呢
首先来说,数据分析最大、最直接的作用是生产了数据,这才是真正数据分析师自己做出来的成绩。不需要花里胡哨的包装,就像开车一定要看速度和转速表一样,根本不需要模型,不需要思维,不需要概念,就这么简单。
第二点,优化运营管理流程。通过对经营数据分析,我们了解企业运营资源如何合理分配,流程哪里需要优化。比如,通过对销售额波动分析,我们确认是销售单价的影响还是成交数量的变化。通过对库存周转率分析,我们可以推断是采购流程有待完善还是备货策略需要变更。
第三,创造更大的价值效益。通过月度或季度生产损耗或不良品的分析,找到降低物料的损耗系数,降低物料成本,创造更大的收益。通过SKU营收与利润贡献分析,确定哪些是畅销品,哪些SKU是营收与利润的贡献的主体,哪些成品又是淘汰或迭代的范畴。
最后,发现了业务机会。通过分析流失用户属性,对用户进行综合评估,找出挽留价值高,挽留难度低的用户群体,提升了用户留存率。
⑶ 数据分析建模在保险行业中有哪些应用
数据分析在保险行业有着较大的应用前景,尤其是在产险方面,其在美国已经有了较 为成熟的应用。在国内保险业可以说是处于起步阶段,这也是由国内保险行业的发展阶段所决定的。其中最为公认的几方面应用包括:1)确定费率 2)获得新客户 3)保留旧客户 4)检测诈骗索赔
⑷ 大数据分析平台有哪些作用
一、数据驱动事务
经过数据产品、数据发掘模型实现企业产品和运营的智能化,然后极大的进步企业的全体效能产出。最常见的应用领域有根据个性化推荐技术的精准营销服务、广告服务、根据模型算法的风控反诈骗服务征信服务等。
二、数据对外变现
经过对数据进行精心的包装,对外供给数据服务,然后取得现金收入。市面上比较常见有各大数据公司利用自己把握的大数据,供给风控查询、验证、反诈骗服务,供给导客、导流、精准营销服务,供给数据开放渠道服务等。
三、数据辅助决议计划
为企业供给根底的数据计算报表分析服务。分析师能够容易获取数据产出分析报告指导产品和运营,产品司理能够经过计算数据完善产品功用和改进用户体验,运营人员能够经过数据发现运营问题并确定运营的策略和方向,管理层能够经过数据把握公司事务运营情况,然后进行一些战略决议计划。
关于大数据分析平台有哪些作用,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑸ 保险大数据平台有哪些内容是什么
以下内容由【军宝老师】提供!
首先,关于保险行业的一些现状、分析、和一些小小的数据,保销集团有些东西可以参考。但是,保销给到的数据,不会特别的详细。
然后呢,在万能的网络上边一搜索,发现居然找不到更多关于保险行业非常详细的数据,在保监局或者行业协会的网站上找不到更多详细的数据……
确实如此!
但是,其实,
在各个城市的行业协会,都有非常非常详细、准确的各种指标!
只不过,这些数据不可能任何人都可以收到、或者看到。
有些数据,是行业协会的会员单位就可以看到的,而有些数据是必须要某一层面以上的人才能够看到的。
针对您再评论中的问题:
关于寿险、财险的数据,这个是有的。
关于各保险公司的份额,这个也是有的(这个,好像应该查到不会太难,虽然我没有试过)。
关于车险的现状——估计不同的解读角度,会得到不同的评估。
关于您所列的第四项,对不起,我没明白……
扩展阅读:【保险】怎么买,哪个好,手把手教你避开保险的这些"坑"
⑹ 数据分析有什么作用
数据分析师的在企业中的主要作用是支持与指导业务发展。基本合格的数据分析师支持业务发展,优秀的数据分析师指导业务发展。
数据分析师在不同类型、规模、发展阶段的企业中,发挥的作用不一样:
在企业发展初期,基本是没有数据分析师的。一个原因是数据量少,不用过多分析就能发现问题;另一个原因是互联网业务发展初期目标很明确,用户量是关键,无论用什么方法先把用户搞来,然后才有数据分析。
在企业发展中期,即业务上升阶段,这个时候需要大量的数据分析师,尤其是没有数据产品建设的企业。这时,数据产品和数据分析的工作基本是数据分析师承担的:定指标、做报表、可视化、分析和预测。
对数据产品建设的重视与否是影响企业发展速度和质量的重要因素。数据分析的最基础职责是帮助企业看清现状。看不清现状的企业是谈不上长远发展的。
企业发展壮大以后,数据分析团队搭建好了,基本上分工会更加明确一些。数据架构师、数据仓库工程师、数据产品经理、数据分析师、数据挖掘、算法工程师等共同构成稳健的数据团队。
⑺ 保险行业里面的数据分析做什么一般需要一些什么技能
数据分析术语叫:KPI
这个工作主要会用电子表格就行
综合能力好也可以有很好的前途。
⑻ 保险大数据平台有哪些内容
一、互联网保险创新的现状
根据中国保险行业协会在2015年年初发布的《互联网保险行业发展报告》显示,针对经营互联网保险业务的公司分类,人身险公司有44家,财产险公司有16家,总体占全行业133家产寿险公司的45%。包括中国人保财险、泰康人寿、平安人寿、太平洋保险、天安财险等在内的多家险企已率先在线上跑马圈地,中国保险公司与互联网的深度融合已全面到来。
首先在监管层面,上个月,酝酿已久的《互联网保险业务监管暂行办法》终于由中国保监会发布,这标志着中国互联网保险业务基础监管规范的形成。《办法》以鼓励创新、防范风险和保护消费者权益为基本思路,从经营条件、经营区域、信息披露、监督管理等方面明确了互联网保险业务经营的基本规则;规定了互联网保险业务的销售、承保、理赔、退保、投诉处理及客户服务等保险经营行为应由保险机构管理负责;强化了经营主体履行信息披露和告知义务的内容和方式,着力解决互联网自主交易中可能存在的信息不透明、信息不对称等问题,以最大限度保护消费者的知情权和选择权。
其次在保险主体方面,早在2013年,中国人保就推出“掌上人保”,并号称是指尖上的保险;去年,以“理赔简单,就在天安”为口号的天安财险“车易赔”APP在全国上线;随后,“中国太保”“大地通保”、“泰康在线”等保险在线服务平台如雨后春笋般出现,可见,拼服务、拼体验已经成为各家保险主体竞争的主要方向。同时,各家保险公司在立足保险本身的同时,从渠道上也不断向外围延伸,分别与P2P平台、信用保证机构等开展不同程度的合作。以下是中国保险行业协会从服务创新、技术创新、渠道创新等三个方面对2014年60家提供互联网服务的产、寿险公司进行评价后的前15名榜单:
二、互联网保险创新背后的风险
应该说基于提升客户体验的互联网保险创新,方向是对的。互联网保险作为一个新兴的领域,发展空间巨大,但同时互联网保险创新也带来一系列风险和问题。从目前已经暴露的风险来看,主要包括保险产品创新异位、消费者投诉急剧增加、消费者道德风险敞口扩大、风险评估和控制不到位等。
(一)保险产品创新异位
自2013年底由“三马”投资的众安在线成立以来,带动了中国各大保险主体在保险产品上的创新热潮。盗刷险、高温险、退货险、喝麻险、世界杯足球流氓险等创新险种不断涌现,寿险公司也相继推出求关爱、爱升级、救生圈等所谓的基于微信平台的“扔捞”产品,名字一个比一个花哨,其中,不乏一些险种初具规模,但更多的是为创新而创新。如世界杯足球流氓险从头到尾就没卖出几份,导致本来就比较便宜的3元/份,到后期直接降价到1分钱/份,变成了一个十足的噱头。更有甚者,开发出雾霾险、赏月险、摇号险等,严重脱离保险的本质。
(二)消费者投诉急剧增加
据保监会近日公布的《关于2015年上半年保险消费者投诉情况的通报》显示,2015年上半年,中国保监会12378投诉维权热线全国转人工呼入总量157544件,同比上升40.24%。而其中,捆绑销售互联网产品的投诉占据一定比例,究其原因,很多保险主体互联网保险业务发展迅速,但管理和服务能力严重不足,片面注重销售前端网络化,后台运营管理却仍是传统思维,前端和后台不配套,买时容易退时难,从而导致消费者投诉。
(三)消费者道德风险敞口扩大
目前,各家保险主体在理赔服务上基本上都推出了简易赔付,即保险公司对于一定金额以下(2000-10000元不等)的保险事故实行简易赔付,消费者通过保险公司自己推出的APP平台,或拍照、或视频,将事故现场信息传输到保险公司后台,保险公司审核确认后立刻赔付,全程一般在5分钟左右时间完成。应该说这种做法极大地简化了理赔程序,缩短了理赔时间,方便了消费者。但是,客观地讲,我们也不得不面对当下国内的基本现状,国民的平均道德水准有待提高,修理厂、4S店有组织地批量造假,保险欺诈层出不穷,这些无疑都将保险公司的风险敞口无限扩大。
(四)风险评估和管理不到位
保险从本质上是风险转移的安排,应该有可量化的数据支撑,目前,很多产品的创新,缺少基本的费率厘定、成本测算等程序。同时,保险讲究的是大数法则,如果一款产品不能具备一定规模,赔付水平就会极不稳定,风险管理也就无从谈起。
三、互联网保险创新的风险管理
(一)保险产品创新:回归本质
保险,在法律和经济学意义上,是一种风险管理方式。因此,保险产品创新的基本原则和底线是创新的产品具有风险管理的可能性,即通过经验的积累和有效的管理措施能够降低保险标的风险。这也就是一般情况下地震、飓风等不可抗力不列入保险范围的根本原因,因为到目前为止,人类还无法通过自身的行为影响上述事件的发生。反观现在的保险产品创新,雾霾险也好,赏月险也罢,甚至是高温险,基本上都突破了上述这一基本原则。
之所以会出现现在这种情况,我想主要有两个方面原因,一是保险本身,在目前的保险市场上,规模产品的同质性非常严重,基本相同的条款,基本相同的费率,基本相同的服务,在这种情况下,产品创新的目标已经不再是客户的“需求”,而是客户的“眼球”。记得若干年前,有一个保险公司开发了一个险种叫“酒驾险”,从始至终没卖出一份保单,但公司从上到下都非常开心,因为这个产品在当时引起了包括新闻媒体、监管部门、同业公司以及消费者的极大关注,很好地提高了公司的知名度。二是与目前整个社会的大环境有关,当下,从集体到个体,在物质和经济的指挥下,每一个社会组织和细胞都在极力获取尽量多的资源,而忽视了资源本身的效用和价值。正像有一句话所说,走着,走着,忘记了出发的目的。
(二)保险风险管理:大数据为器
1.大数据在费率厘定中的应用。保单的费率设定是保险公司风险管理的源头,也是一项非常重要的工作,主要目的是使设定的费率对应于投保人的风险等级,风险越小,费率越低,尽量做到公平。确定费率较为关键的问题就是找出“影响赔付支出的风险因素或变量”,其实生命表就是“影响赔付支出的风险因素或变量”之一年龄的一个分类。再如,在车险定价中城市交通的拥挤程度、驾驶员的年龄、驾龄、性别、汽车的新旧程度等都可能是“影响赔付支出的风险因素或变量”,而这些因素或变量就是可以通过大量数据分析和处理来确定。
2.大数据在风险评估中的应用。在大数据时代,风险评估已经不仅仅局限于公司的历史数据、行业的历史数据,无论是风险特征的描述还是数据资源的获取都更加便利。首先在占据财产险市场70%以上份额的车险领域,保险公司可以获取三个层级数据来支撑风险评估,第一层级是核心层,包括公司和行业数据,第二层级是紧密层,包括车型、汽车零整比、二手车等数据;第三层级是外围移动层,包括利用车载传感设备收集驾驶员行为数据等。同时,对于保险公司的精算师来讲,更多、更广的数据获取,可以更精确地识别个体对象的潜在风险,建立更加有效的数据模型,不断改善和提高精算的精准程度,以帮助判断和评估风险以及风险准备金。
3.大数据在反理赔欺诈中的应用。在确保数据资源的情况下,通过完整的、多样化的数据(数据包括但不限于公司内部保单及理赔历史记录、行业数据、征信记录、公共社交网络数据、犯罪记录等),辅之以有效的算法和模型,来识别理赔中可能的欺诈模式、理赔人潜在的欺诈行为以及可能存在的欺诈链条,应该是未来反理赔欺诈的主要方向。而对于整个中国保险行业来讲,尽快建立起一套行业级的保险数据信息平台,是反理赔欺诈的关键。目前,上海、江苏等省市已经实现理赔信息数据共享,在这些地区反理赔欺诈行为的成效明显提高。
4.大数据在保险行业风险管理中应用之核心—数据整合。目前保险公司的数据有行业平台的同业数据、前端客户APP导入(或现场出单)数据,中端中介、渠道、理赔、呼叫数据,后端财务收付数据,另外,还有定价系统的汽车零配件数据、人事系统的人员数据、稽核审计风控系统的风控数据等,种类繁多和庞杂,因此,急需建立大数据平台进行数据整合,统一数据存储和传递标准,并将不同系统进行数据打通,再根据不同需要进行数据挖掘。
(三)保险风险控制:新技术应用
未来,新技术、新设备的应用将成为保险行业风险控制的主要途径。在承保环节,基于大数据基础的数据分析技术将在第一时间立体呈现保险标的各项数据和特征,为承保决策和政策提供第一手资料,从源头控制风险。在理赔环节,新技术、新设备同样将被广泛应用。在车辆保险领域,通过装载在车上的无线电子设备,运用通讯网络,实现对车辆、道路以及行车驾驶员进行静、动态信息提取和行为记录,从而监督行车驾驶员人的行为风险和道德风险,并进行出险前预防、出险中响应和出险后处理,从而使保险事故管理变被动为主动,降低理赔成本。在人寿保险领域,利用能够实时监控人体健康情况的可穿戴设备,来获取和细分不同群体、不同年龄的人体健康和生死概率,并适时向客户提供饮食、健身等方面的建议,从而降低投保人的医疗费用。在家庭财产险领域,通过智能家居系统对住宅进行远程监控并及时发现和缓解风险,当家中发生煤气泄漏或水管爆裂,可自动关掉阀门,从而减轻损失等。
任何事物的发展,都要有与之相对应的配套管理措施,互联网保险创新也不例外。今后相当长一段时间,互联网保险创新都将在路上,基于互联网保险创新的风险管理也必将亦步亦趋,紧紧跟随。
扩展阅读:【保险】怎么买,哪个好,手把手教你避开保险的这些"坑"