Ⅰ 用eviews软件计算股票波动率,garch(1,1)模型估计出来的结果如下图,请问那些数值是表示波动率的
c————欧米伽
RESID(-1)^2——阿尔法
GARCH(-1)——贝塔
带入下面方程式
Ⅱ 请问股票波动率如何计算
波动率的计算:
江恩理论认为,波动率分上升趋势的波动率计算方法和下降趋势的波动率计算方法。
1、上升趋势的波动率计算方法是:在上升趋势中,底部与底部的距离除以底部与底部的相隔时间,取整。
上升波动率=(第二个底部-第一个底部)/两底部的时间距离
2、下降趋势的波动率计算方法是:在下降趋势中,顶部与顶部的距离除以顶部与顶部的相隔时间,取整。并用它们作为坐标刻度在纸上绘制。
下降波动率=(第二个顶部-第一个顶部)/两顶部的时间距离
拓展资料:
股市波动率的类型:
1、实际波动率
实际波动率又称作未来波动率,它是指对期权有效期内投资回报率波动程度的度量,由于投资回报率是一个随机过程,实际波动率永远是一个未知数。或者说,实际波动率是无法事先精确计算的,人们只能通过各种办法得到它的估计值。
2、历史波动率
历史波动率是指投资回报率在过去一段时间内所表现出的波动率,它由标的资产市场价格过去一段时间的历史数据(即St的时间序列资料)反映。这就是说,可以根据{St}的时间序列数据,计算出相应的波动率数据,然后运用统计推断方法估算回报率的标准差,从而得到历史波动率的估计值。
显然,如果实际波动率是一个常数,它不随时间的推移而变化,则历史波动率就有可能是实际波动率的一个很好的近似。
3、预测波动率
预测波动率又称为预期波动率,它是指运用统计推断方法对实际波动率进行预测得到的结果,并将其用于期权定价模型,确定出期权的理论价值。
因此,预测波动率是人们对期权进行理论定价时实际使用的波动率。这就是说,在讨论期权定价问题时所用的波动率一般均是指预测波动率。需要说明的是,预测波动率并不等于历史波动率。
4、隐含波动率
隐含波动率是期权市场投资者在进行期权交易时对实际波动率的认识,而且这种认识已反映在期权的定价过程中。从理论上讲,要获得隐含波动率的大小并不困难。
由于期权定价模型给出了期权价格与五个基本参数(St,X,r,T-t和σ)之间的定量关系,只要将其中前4个基本参数及期权的实际市场价格作为已知量代入期权定价模型,就可以从中解出惟一的未知量σ,其大小就是隐含波动率。因此,隐含波动率又可以理解为市场实际波动率的预期。
参考链接:网络:波动率指数
Ⅲ 每日的股价我有,他的日收益率,日波动率我也算出来了,那个 kmv模型公式 我看不懂,不知道该怎么
大盘调整风险也在加大,而且一旦量价背离局面严重起来,调整力度还会很大。只是这些不确定性现在已经被淹没在超级大盘股的拉升中。 股民此时不能盲目追涨,为高位的筹码埋单,要操作需要从板块轮动角度,对有成长性的二线蓝筹股给予关注,
Ⅳ 如何用R软件处理高频数据,建立已实现波动率模型
1、打开一个空白Excel工作表,打开VBA编辑器(点击菜单:工具 -> 宏 -> Visual Basic编辑器):
2、插入模块(点击VBA编辑器菜单:插入 -> 模块):
3、将以下代码复制/粘贴到代码窗口中:
Function CallOpt(stock, exercise, maturity, rate, volatility) As Double
D1 = (Log(stock / exercise) + (rate + (volatility ^ 2) / 2) * maturity) / (volatility * Sqr(maturity))
D2 = D1 - volatility * Sqr(maturity)
CallOpt = stock * Application.NormSDist(D1) - exercise * Exp(-rate * maturity) * Application.NormSDist(D2)
End Function
Function PutOpt(stock, exercise, maturity, rate, volatility) As Double
D1 = (Log(stock / exercise) + (rate + (volatility ^ 2) / 2) * maturity) / (volatility * Sqr(maturity))
D2 = D1 - volatility * Sqr(maturity)
PutOpt = exercise * Exp(-rate * maturity) * Application.NormSDist(-D2) - stock * Application.NormSDist(-D1)
End Function
粘贴完成后如下图:
3、关闭“Visual Basic 编辑器”窗口,回到工作表。此时若查看函数列表,可看到在“用户定义”类别中增加了两个函数,CallOpt和PutOpt:
=CallOpt(stock,exercise,maturity,rate,volatility) 用于计算认购权证的理论价格;
=PutOpt(stock,exercise,maturity,rate,volatility) 用于计算认沽权证的理论价格。
两个函数都是需要5个变量,依次为:
stock-正股现价;
exercise-权证行权价;
maturity-权证剩余期限(折算成年,在Excel中=(到期日-当前日)/365);
rate-无风险利率(一般取国债的年收益率);
volatility-波动率(一般取正股最近3个月的历史波动率);
现在只需要在单元格中输入函数名并依顺序输入各变量,就可轻而易举的算出权证理论价格了。若还有不明白的,请将下表复制/粘贴到工作表“A1”单元格中试试看。
最后将该Excel文件保存起来。记住,以后每次打开该文件,都会出现以下的安全警告,记得一定要点选“启用宏”,否则自定义函数将不能使用。
Ⅳ 股票术语:波动率 什么是实际波动率
实际波动率,度量波动率的方法,是指对期权有效期内投资回报率波动程度的度量,大体上可分为参数法和非参数法两类。
要明确实际波动率,首先要从波动率的概念入手。波动率(Volatility):是指关于资产未来价格不确定性的度量。它通常用资产回报率的标准差来衡量。也可以指某一证券的一年最高价减去最低价的值再除以最低价所得到的比率。业内将波动率定义为价格比率自然对数的标准差。波动率的种类有:实际波动率,隐含波动率,历史波动率等等,实际波动率便是波动率的一种。
波动率指数:
1、实际波动率
实际波动率又称作未来波动率,它是指对期权有效期内投资回报率波动程度的度量,由于投资回报率是一个随机过程,实际波动率永远是一个未知数。或者说,实际波动率是无法事先精确计算的,人们只能通过各种办法得到它的估计值。
2、历史波动率
历史波动率是指投资回报率在过去一段时间内所表现出的波动率,它由标的资产市场价格过去一段时间的历史数据(即St的时间序列资料)反映。这就是说,可以根据{St}的时间序列数据,计算出相应的波动率数据,然后运用统计推断方法估算回报率的标准差,从而得到历史波动率的估计值。显然,如果实际波动率是一个常数,它不随时间的推移而变化,则历史波动率就有可能是实际波动率的一个很好的近似。
3、预测波动率
预测波动率又称为预期波动率,它是指运用统计推断方法对实际波动率进行预测得到的结果,并将其用于期权定价模型,确定出期权的理论价值。因此,预测波动率是人们对期权进行理论定价时实际使用的波动率。这就是说,在讨论期权定价问题时所用的波动率一般均是指预测波动率。需要说明的是,预测波动率并不等于历史波动率,因为前者是人们对实际波动率的理解和认识,当然,历史波动率往往是这种理论和认识的基础。除此之外,人们对实际波动率的预测还可能来自经验判断等其他方面。
4、隐含波动率
隐含波动率是期权市场投资者在进行期权交易时对实际波动率的认识,而且这种认识已反映在期权的定价过程中。从理论上讲,要获得隐含波动率的大小并不困难。由于期权定价模型给出了期权价格与五个基本参数(St,X,r,T-t和σ)之间的定量关系,只要将其中前4个基本参数及期权的实际市场价格作为已知量代入期权定价模型,就可以从中解出惟一的未知量σ,其大小就是隐含波动率。因此,隐含波动率又可以理解为市场实际波动率的预期。
期权定价模型需要的是在期权有效期内标的资产价格的实际波动率。相对于当期时期而言,它是一个未知量,因此,需要用预测波动率代替之,一般可简单地以历史波动率估计作为预测波动率,但更好的方法是用定量分析与定性分析相结合的方法,以历史波动率作为初始预测值,根据定量资料和新得到的实际价格资料,不断调整修正,确定出波动率。
Ⅵ GARCH模型测股票波动性需要什么数据
你只需下载股票每日历史价位就可以了。比方说你下载的是每日开盘价(用每日均价也是可以的),记为S1,S2, S3。。。然后,你需要把这些数字转换成价格日变化率,即(S2-S1)/S1, (S3-S2)/S2,...等等,然后把这组变化率数据导入Eviews, 按下面链接页面的步骤操作就可以,很容易的。
http://perso.fundp.ac.be/~mpetijea/MyEviews/Clips/clip17.html
加油。
Ⅶ 关于波动率预测的模型有哪些这些模型分别有哪些优缺点
不知道增长趋势是什么意思,是一种状态还是一个值,所以都写下,如果能对趋势给个明显的说明那么就好办了预测增长的值可以用:有时间性:灰色预测、时间序列arima无时间性:指数平滑、移动平均预测增长的状态:马尔可夫链
Ⅷ 如何用GARCH(1,1)求股票的具体波动率数据
以哈飞股份(600038)为例,运用GARCH(1,1)模型计算股票市场价值的波动率。
GARCH(1,1)模型为:
(1)
(2)
其中, 为回报系数, 为滞后系数, 和 均大于或等于0。
(1)式给出的均值方程是一个带有误差项的外生变量的函数。由于是以前面信息为基础的一期向前预测方差,所以称为条件均值方程。
(2)式给出的方程中: 为常数项, (ARCH项)为用均值方程的残差平方的滞后项, (GARCH项)为上一期的预测方差。此方程又称条件方差方程,说明时间序列条件方差的变化特征。
通过以下六步进行求解:
本文选取哈飞股份2009年全年的股票日收盘价,采用Eviews 6.0的GARCH工具预测股票收益率波动率。具体计算过程如下:
第一步:计算日对数收益率并对样本的日收益率进行基本统计分析,结果如图1和图2。
日收益率采用JP摩根集团的对数收益率概念,计算如下:
其中Si,Si-1分别为第i日和第i-1日股票收盘价。
图1 日收益率的JB统计图
对图1日收益率的JB统计图进行分析可知:
(1)标准正态分布的K值为3,而该股票的收益率曲线表现出微量峰度(Kurtosis=3.748926>3),分布的凸起程度大于正态分布,说明存在着较为明显的“尖峰厚尾”形态;
(2)偏度值与0有一定的差别,序列分布有长的左拖尾,拒绝均值为零的原假设,不属于正态分布的特征;
(3)该股票的收益率的JB统计量大于5%的显著性水平上的临界值5.99,所以可以拒绝其收益分布正态的假设,并初步认定其收益分布呈现“厚尾”特征。
以上分析证明,该股票收益率呈现出非正态的“尖峰厚尾”分布特征,因此利用GARCH模型来对波动率进行拟合具有合理性。
第二步:检验收益序列平稳性
在进行时间序列分析之前,必须先确定其平稳性。从图2日收益序列的路径图来看,有比较明显的大的波动,可以大致判断该序列是一个非平稳时间序列。这还需要严格的统计检验方法来验证,目前流行也是最为普遍应用的检验方法是单位根检验,鉴于ADF有更好的性能,故本文采用ADF方法检验序列的平稳性。
从表1可以看出,检验t统计量的绝对值均大于1%、5%和10%标准下的临界值的绝对值,因此,序列在1%的显著水平下拒绝原假设,不存在单位根,是平稳序列,所以利用GARCH(1,1)模型进行检验是有效的。
图2 日收益序列图
表1ADF单位根检验结果
第三步:检验收益序列相关性
收益序列的自相关函数ACF和偏自相关函数PACF以及Ljung-Box-Pierce Q检验的结果如表3(滞后阶数 =15)。从表4.3可以看出,在大部分时滞上,日收益率序列的自相关函数和偏自相关函数值都很小,均小于0.1,表明收益率序列并不具有自相关性,因此,不需要引入自相关性的描述部分。Ljung-Box-Pierce Q检验的结果也说明日收益率序列不存在明显的序列相关性。
表2自相关检验结果
第四步:建立波动性模型
由于哈飞股份收益率序列为平稳序列,且不存在自相关,根据以上结论,建立如下日收益率方程:
(3)
(4)
第五步:对收益率残差进行ARCH检验
平稳序列的条件方差可能是常数值,此时就不必建立GARCH模型。故在建模前应对收益率的残差序列εt进行ARCH检验,考察其是否存在条件异方差,收益序列残差ARCH检验结果如表3。可以发现,在滞后10阶时,ARCH检验的伴随概率小于显著性水平0.05,拒绝原假设,残差序列存在条件异方差。在条件异方差的理论中,滞后项太多的情况下,适宜采用GARCH(1,1)模型替代ARCH模型,这也说明了使用GARCH(1,1)模型的合理性。
表3日收益率残差ARCH检验结果
第六步:估计GARCH模型参数,并检验
建立GARCH(1,1)模型,并得到参数估计和检验结果如表4。其中,RESID(-1)^2表示GARCH模型中的参数α,GARCH(-1)表示GARCH模型中的参数β,根据约束条件α+β<1,有RESID(-1)^2+GARCH(-1)=0.95083<1,满足约束条件。同时模型中的AIC和SC值比较小,可以认为该模型较好地拟合了数据。
表4日收益率波动率的GARCH(1,1)模型的参数估计
Ⅸ 股票的波动性是按什么指标算的
股票的波动性是按波动率指数算的,芝加哥期权交易所(Chicago Board Options Exchange,CBOE)的波动率指数(Volatility Index,VIX)或者称之为“恐惧指数”,衡量标准普尔500指数(S&P 500 Index)期权的隐含波动率。VIX指数每日计算,代表市场对未来30天的市场波动率的预期。
类型:
1、实际波动率
实际波动率又称作未来波动率,它是指对期权有效期内投资回报率波动程度的度量,由于投资回报率是一个随机过程,实际波动率永远是一个未知数。或者说,实际波动率是无法事先精确计算的,人们只能通过各种办法得到它的估计值。
2、历史波动率
历史波动率是指投资回报率在过去一段时间内所表现出的波动率,它由标的资产市场价格过去一段时间的历史数据(即St的时间序列资料)反映。这就是说,可以根据{St}的时间序列数据,计算出相应的波动率数据,然后运用统计推断方法估算回报率的标准差,从而得到历史波动率的估计值。显然,如果实际波动率是一个常数,它不随时间的推移而变化,则历史波动率就有可能是实际波动率的一个很好的近似。
3、预测波动率
预测波动率又称为预期波动率,它是指运用统计推断方法对实际波动率进行预测得到的结果,并将其用于期权定价模型,确定出期权的理论价值。因此,预测波动率是人们对期权进行理论定价时实际使用的波动率。这就是说,在讨论期权定价问题时所用的波动率一般均是指预测波动率。需要说明的是,预测波动率并不等于历史波动率,因为前者是人们对实际波动率的理解和认识,当然,历史波动率往往是这种理论和认识的基础。除此之外,人们对实际波动率的预测还可能来自经验判断等其他方面。
4、隐含波动率
隐含波动率是期权市场投资者在进行期权交易时对实际波动率的认识,而且这种认识已反映在期权的定价过程中。从理论上讲,要获得隐含波动率的大小并不困难。由于期权定价模型给出了期权价格与五个基本参数(St,X,r,T-t和σ)之间的定量关系,只要将其中前4个基本参数及期权的实际市场价格作为已知量代入期权定价模型,就可以从中解出惟一的未知量σ,其大小就是隐含波动率。因此,隐含波动率又可以理解为市场实际波动率的预期。
期权定价模型需要的是在期权有效期内标的资产价格的实际波动率。相对于当期时期而言,它是一个未知量,因此,需要用预测波动率代替之,一般可简单地以历史波动率估计作为预测波动率,但更好的方法是用定量分析与定性分析相结合的方法,以历史波动率作为初始预测值,根据定量资料和新得到的实际价格资料,不断调整修正,确定出波动率。