『壹』 股利固定增长的普通股资本成本率公式是什么
其计算公式为:
K=D/P+G
K--权益资本成本
D--预期年股利率
P--普通股市价
G--普通股年股利增长率。在单独测算各种类型资本成本(主要是权益资本成本)方面,从财务管理学的角度看,确定权益资本成本率也称为权益资本成本,包括普通股成本和留存收益成本。留存收益成本又可称为内部权益成本,普通股成本又可称为外部权益成本。
(1)固定增长股票模型公式扩展阅读:
债券资金成本率=(债券面值×票面利率)×(1-所得税率)/债券的发行价格×(回1-债券筹资费率)
普通股股票资金成本率有好几种计算公式:
常用的是:无风险利率+贝塔系数×(市场报酬率-无风险利率)
如果股利固定不变,则:普通股股票资金成本率=每年固定的股利/普通股发行价格×(1-普通股筹资费率)
如果股利增长率固定不变,则普通股股票资金成本率=预期第一年的股利/普通股发行价格×(1-普通股筹资费率)+股利固定增长率
『贰』 股利固定增长模型中有一个公式:P=D0*(1+g)/(K-g)=D1/(K-g) 如何来决定哪种情况下是使用D0,情况下是使用D1.
如果题中给出本年支付的股利数字,然后告诉你增长率,那么就要用D0,如果直接给出下一年的股利,就用D1。
模型假定未来股利的永续流入,投资者的必要收益率,折现公司预期未来支付给股东的股利,来确定股票的内在价值(理论价格)。
分两种情况:一是不变的增长率;另一个是不变的增长值。具有三个假定条件:股息的支付在时间上是永久性的;股息的增长速度是一个常数;模型中的贴现率大于股息增长率。
(2)固定增长股票模型公式扩展阅读:
由于股票市场的投资风险一般大于货币市场,投资于股票市场的资金势必要求得到一定的风险报酬,使股票市场收益率高于货币市场,形成一种收益与风险相对应的较为稳定的比价结构。
零增长模型实际上是不变增长模型的一个特例。假定增长率g等于0,股利将永远按固定数量支付,这时,不变增长模型就是零增长模型。
『叁』 股利固定增长的股票估价模型
可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。
第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。
第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。
『肆』 股票估价中的股利固定增长模型数学推导问题
可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。
第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。
第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+
D2/(1+R)^2+D3/(1+R)^3
+
……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。
『伍』 债券价值、股票价值的计算原理及其固定成长股票收益率的计算方法
(一)股票价值计算
1.股利固定模型(零成长股票的模型)
假如长期持有股票,且各年股利固定,其支付过程即为一个永续年金,则该股票价值的计算公式为:
P=
D为各年收到的固定股息,K为股东要求的必要报酬率
2.股利固定增长模型
从理论上看,企业的股利不应当是固定不变的,而应当是不断增长的。假定企业长期持有股票,且各年股利按照固定比例增长,则股票价值计算公式为:
D0为评价时已经发放的股利,D1是未来第一期的股利,K为投资者所要求的必要报酬率。
『陆』 如何理解股利贴现模型以及其计算公式
股利贴现模型,简称DDM,是一种最基本的股票内在价值评价模型,股票内在价值可以用股票每年股利收入的现值之和来评价;股利是发行股票的股份公司给予股东的回报,按股东的持股比例进行利润分配,每一股股票所分得的利润就是每股股票的股利。
股利贴现模型为定量分析虚拟资本、资产和公司价值奠定了理论基础,也为证券投资的基本分析提供了强有力的理论根据。
股利贴现模型计算公式分为三种。零增长模型即股利增长率为0,计算公式V=D0/k,V为公司价值,D0为当期股利,K为投资者要求的投资回报率,或资本成本;不变增长模型,即股利按照固定的增长率g增长,计算公式为V=D1/(k-g);二段增长模型、三段增长模型、及多段增长模型。
(6)固定增长股票模型公式扩展阅读:
股利是股东投资股票获得的唯一现金流,因此现金股利是决定股票价值的主要因素,而盈利等其他因素对股票价值的影响,只能通过股利间接地表现出来。现金股利贴现模型适合于分红多且稳定的公司,一般为非周期性行业。
由于该模型使用的是预期现金股利的贴现价值,因此对于分红很少或者股利不稳定的公司、周期性行业均不适用。股利贴现模型在实际应用中存在的问题有许多公司不支付现金股利,股利贴现模型的应用受到限制;股利支付受公司股利政策的人为因素影响较大;相对于公司收益长期明显滞后。
『柒』 无穷递缩等比数列公式如何推导出股票固定增长模型的价值公式
书本上是这样写:
假设如果股利以一个固定的比率增长,那么我们就已经把预测无限期未来股利的问题,转化为单一增长率的问题。如果D0是刚刚派发的股利,g是稳定增长率,那么股价可以写成:
P0=D1/(1+R)+ D2/(1+R)^2 + D3/(1+R)^3 + ……
=D0(1+g)/(1+R) + D0(1+ g)^2/(1+R)^2 + D0(1+ g)^3/(1+R)^3……
只要增长率g<R,这一系列现金流现值就是:
P0=D0(1+g)/ (R-g )=D1/(R-g)
我个人的数学推导:
首先P0=D1/(1+R)+ D2/(1+R)^2 + D3/(1+R)^3 + ……(增长率g<R)
就能把上面的公式看成是等比数列求和
A1=D0(1+g)/(1+R) Q=(1+g)/ (1+R)
当 g<R 时,可以推出Q<1
就能利用无穷递减等比数列求和公式:SN=A1/(1-Q)
那么:P0=SN=D1/(1+R)+ D2/(1+R)^2 + D3/(1+R)^3 + ……(增长率g<R)
= D0(1+g)/(1+R) + D0(1+ g)^2/(1+R)^2 + D0(1+ g)^3/(1+R)^3……
=D0(1+g)/(1+R) /(1-Q)
=D0(1+g)/(1+R) /(1-(1+g)/ (1+R))
=D0(1+g)/R-g
最终结果:P0= D0(1+g)/ (R-g ) = D1/(R-g)
『捌』 固定股利增长模型里面,如果r(贴现率)小于或者等于g(股利增长率),那么贴现值怎么算
股利折现模型有三个假设:1、股利支付是永久的;2、股利增长率是永续的;3、r>g。
最后之所以得到D/(r-g),是带着r>g的假设,由无限期的等比数列推导而来的。r<g时推导就不能这么推导了,要算PV只能直接逐期折现。所以最后你会发现折现的结果是PV等于正无穷,显然不合逻辑。
所以要么g不可能一直那么高(从企业生命周期角度理解),要么r不可能一直那么低(从一般均衡角度理解),总之r<g不可能永远持续。
『玖』 固定增长股票价值公式中的 d0(1+g)/Rs-g 怎么换算出来的 主要是Rs-g不明白!
是依据股票投资的收益率不断提高的思路,Rs=D1/Po+g股票收益率=股利收益率+资本利得Po=d0(1+g)/Rs-g。
股票是虚拟资本的一种形式,它本身没有价值。从本质上讲,股票仅是一个拥有某一种所有权的凭证。
股票之所以能够有价,是因为股票的持有人,即股东,不但可以参加股东大会,对股份公司的经营决策施加影响,还享有参与分红与派息的权利,获得相应的经济利益。同理,凭借某一单位数量的股票,其持有人所能获得的经济收益越大,股票的价格相应的也就越高。
(9)固定增长股票模型公式扩展阅读
固定成长股票的价值
如果企业股利不断稳定增长,并假设每年股利增长均为g,目前的股利为D0,则第t年的股利为:
Dt=D0(1 +g)
固定成长股票的价值的计算公式为:
当g固定时,上述公式可简化为:
如要计算股票投资的预期报酬率,则只要求出上述公式中Rs即可:
Rs= (D1 /P0) +g
例如,某企业股票目前的股利为4元,预计年增长率为3%,投资者期望的最低报酬率为8%,则该股票的内在价值为:
=82.4(元)
若按82.4元买进,则下年度预计的投资报酬率为:
Rs= (D1 /P0) +g
=4×(1+3%)÷82.4+3%
=8%
『拾』 固定成长股票估值模型计算公式推倒导
数学本质是对一个等比数列求极限和的过程。
该等比数列的公比q,等于(1+g)/(1+k),其中g为股利的固定增长率,k为折现率。
等比数列的求和公式很简单,即数列的和S,等于a1*(1-q^n)/(1-q),把q的表达式代入该求和公式中,再把n趋于无求大,就得到结果:股价理论值P=D1/(k-g),其中D1为第一期股利即D0(1+g)。
(10)固定增长股票模型公式扩展阅读:
数学思维拓展训练特点:
1、 全面开发孩子的左右脑潜能,提升孩子的学习能力、解决问题能力和创造力;帮助幼儿学会思考、主动探讨、自主学习,
2、 通过思维训练的数学活动和策略游戏, 对思维的广度、深度和创造性方面进行综合训练。
3、 根据儿童身心发展的特点,提高幼儿的数学推理、空间推理和逻辑推理,促进幼儿多元智能的发展,为塑造幼儿的未来打下良好的基础。
4、利用神奇快速的心算训练和思维启蒙训练,提高与智商最为相关的五大领域的基础能力。
5、为解决幼小衔接的难题而准备。