导航:首页 > 股票市场 > 股票随机过程

股票随机过程

发布时间:2021-07-28 10:29:58

❶ 什么是随机序列

我的理解,随机序列是“有顺序,有标号”的一系列随机数,随机过程是研究它们统计学特性的学科(特别是“时相关”特性,这个是随机变量研究里没有的)。随机序列一般不是有标号(离散的标号,例如x1,x2,...),就是有时间轴(连续的标号,比如s(t)其中t为时间),最重要的特点是“有顺序”!

和一般的随机变量不同(你每次的观测量只是一个数而已),对于随机序列,你每次的观测量,就最起码是一大长串随机数了。

举两个例子:
(1)某支股票的每日收盘价(只看收盘价!),这是个典型的离散时间轴随机序列,间隔为1天,股票价格受很多因素影响因而呈现随机性,但是统计上仍然有规律可循。

(2)电子仪器的噪声曲线,这是个典型的连续时间轴随机序列,你任何时候都能从仪器读到值,该值随机,但是这个值是有统计规律的,例如波动范围之类的参数。

随机过程的重要性,就是研究随机序列的一些统计学特性,特别是“时相关”特性。比如金融学里,人们就建立了大量的模型,去研究股票走势里的统计特性,甚至拿来进行股价预测,成功的预测模型可以帮助人们获得大笔利润。

例如,金融学里都会教的ARMA模型(你可以看下参考资料),就做了如下假设:今天的股票收盘价,会受到前面几天股票收益的影响(线性关系),在加上一个白噪声函数。这就是随机序列的“时相关”重要特性的体现。这只是个简单的例子。

随机过程,在工程学,金融学,经济学等学科里,都有很重要的地位,努力学好它吧。

❷ 求罗斯随机过程答案

n维随机变量是随机过程的一种特殊情况.n维随机变量是一个由n个随机变量为分量组成的n维向量(x1,x2,,xn),其中xi(i=1,2,,n)是随机变量,是研究一维随机变量的推广,一般来说是研究他们独立的情况,如果这些向量相关联是就是随机过程的研究范围.随机过程是研究一组随机向量的统计性质,这组随机向量和n维随机向量类似,只不过这组随机向量之间是相关的,不是独立的,并且这组向量的下标可以是实数,也可以是无理数.比如股票的K线图,昨天的数据和今天的数据相关,简单的说就是相关联.)

❸ 如何证明股票价格 平稳随机过程

日K线代表了股价的随机变量,由于每日的开盘价和收盘价的数值是不连续的,所以日K线所表示的股价是一个离散的随机变量。在T1到T2这段时间里产生的一族日K线离散随机变量和它们在股价—时间二维坐标上形成的走势或者轨迹,这就是离散随机变量的随机过程。yuuu1233

❹ 速求n维随机变量和随机过程有什么区别请说的详细点

n维随机变量是随机过程的一种特殊情况。n维随机变量是一个由n个随机变量为分量组成的n维向量(x1,x2,...,xn),其中xi(i=1,2,...,n)是随机变量,是研究一维随机变量的推广,一般来说是研究他们独立的情况,如果这些向量相关联是就是随机过程的研究范围。
随机过程是研究一组随机向量的统计性质,这组随机向量和n维随机向量类似,只不过这组随机向量之间是相关的,不是独立的,并且这组向量的下标可以是实数,也可以是无理数。比如股票的K线图,昨天的数据和今天的数据相关,简单的说就是相关联。

不知道对你能不能有帮助:)

❺ 随机过程在金融领域应用的有关题目,请教高人指点~~~

解答:本题我们可以直接利用独立同分布的对数正态随机变量的定义来解答。
1)假设Z是标准正态随机变量,则第一周股票价格上升的概率是
P(S(1)/S(0) >1)=P{ln[S(1)/S(0) ]>0}=P{Z>-0.0165/0.0730}=P{Z>-0.226}=P{Z<0.226}查表约等于0.5894. 于是连续两周价格上升的概率为(0.5894)²=0.3474.
2)两周后的股票价格高于今天的价格概率为P{S(2)/S(0) >1}=P{[S(2)/S(1)][S(1)/S(0)>1}
=P{ln[S(2)/S(1)]+ln[S(1)/S(0)>1}>0
=P{Z>-0.0330/0.0730√2}=P{Z>-0.31965}=P{Z<0.31965}查表约等于0.6354.

❻ 如果股价服从随机过程是不是说明股价不可预测

你的问题的设计点就是错误的,随机过程是不可控的,但股价是可控的,但决定股价上涨和上涨幅度以及下跌的因素太多了,而且很多都是你不知道的,所以股价才在你的眼里是不可预测的!

❼ 随机过程及应用

在概率论概念中,随机过程是随机变量的集合。若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。实际应用中,样本函数的一般定义在时间域或者空间域。随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,反对法随机运动如布朗运动、随机徘徊等等。

设为一概率空间,另设集合T为一指标集合。如果对于所有,均有一随机变量定义于概率空间,则集合为一随机过程。

通常,指标集合T代表时间,以实数或整数表示。以实数形式表示时,随机过程称为连续随机过程;以整数表示时,则为离散随机过程。随机过程中的参数只为分辨同类随机过程中的不同实例,如上文下理不构成误会,通常略去。例如表达单次元布朗运动时,常以表达,但若考虑两同时进行布朗运动的粒子,则会分别以和(或作和)表示。

历史
为了了解金融市场和研究布朗运动,在19世纪后期人们开始研究随机过程。第一个用数学语言描述布朗运动的是数学家Thorvald N. Thiele。 他在1880年发表了第一篇关于布朗运动的文章。随后,在1900年, Louis Bachelier的博士论文“投机理论” 提出了股票和期权市场的随机分析。阿尔伯特·爱因斯坦(在他1905年的一篇论文中)和玛丽安·一维Smoluchowski(1906年)从物理界的角度出发,把它作为了一种间接证明了原子和分子的存在。他们所描述的布朗运动方程在1908年被让·佩兰核实。

从爱因斯坦的文章的摘录描述了随机模型的基本原理:

"它必须明确假定每个单个颗粒执行的运动是独立于所有其他的粒子的运动;它也将被认为是1的动作和相同的颗粒在不同的时间间隔是独立的过程,只要这些的时间间隔不是非常小"

"我们引入一时间间隔蛋白考虑,相对来说这是非常小的,但是我们可观察到的时间间隔,仍然过大,在两个连续时间间隔蛋白,由粒子所执行的动作可以被认为是作为彼此独立的事件"。

❽ 如何理解随机过程的概念呢

在概率论概念中,随机过程是随机函数的集合。若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。实际应用中,样本函数的一般定义在时间域或者空间域。随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

❾ 请问股票价格的确定有没有合适的模型,比如随机过程或者其他,最好不用CAPM,论文急用,谢谢

红利资本化模型, 股利贴现模型。通过股利贴现计算现在的现值。这个用的最多的模型

❿ 什么是产定价理论、投资组合理论、布朗维纳随机过程

1.投资组合,是指投资者将投资资金按照一定比例已组合投资的形式投资在不同的资产上。而投资组合理论,是讨论由多项资产构成的资产组合作为一个整体的风险与收益关系,以及投资者如何合理的选择自己的最佳投资组合等问题。
2.资本资产定价模型,全称 Capital asset pricing model
风险越高 投资者所要求的预期收益就越高 这样才能弥补他所承受的高风险。
这个模型 风险资产的收益率=无风险资产的收益率+风险溢价 风险溢价=(市场整体收益率-无风险资产收益率)*(一个系数) 一般用希腊字母β表示

风险不是资产,资产是能带来收益的。

我用股市来说明吧 个股的合理回报率=无风险回报率+β*(整体股市回报率-无风险回报率(可以用国债收益率衡量))
β=1时, 代表该个股的系统风险=大盘整体系统风险,
β>1 时 代表该个股的系统风险高于大盘 一般是易受经济周期影响 例如 地产股 和耐用消费品股。这种一般称为景气循环股(cyclicals)
β<1时 代表该个股风险低于大盘 一般不易受经济周期影响 例如食品零售业 和 公共事业股。 这种一般成为 防御类股(defensive stocks)

系统风险越高 也就是易受经济周期影响 投资者就需要较高的回报率抵补他承受的高风险。

我理解的是 资产的价值是由它未来产生的现金流决定的,对于像股票这样的资本资产,它的价值就是由它未来产生的收益决定的,所以收益率是最关键的。收益率决定了资本资产的定价。所以称为资本资产定价模型。

3.布朗维纳随即过程,布朗指布朗运动,是微小粒子表现出的无规则运动。现在把定义在连续函数空间的一种描述布朗运动的测度称为维纳测度,相应的随机过程称为维纳过程。

阅读全文

与股票随机过程相关的资料

热点内容
地狱解剖类型电影 浏览:369
文定是什么电影 浏览:981
什么影院可以看VIP 浏览:455
受到刺激后身上会长樱花的图案是哪部电影 浏览:454
免费电影在线观看完整版国产 浏览:122
韩国双胞胎兄弟的爱情电影 浏览:333
法国啄木鸟有哪些好看的 浏览:484
能看片的免费网站 浏览:954
七八十年代大尺度电影或电视剧 浏览:724
欧美荒岛爱情电影 浏览:809
日本有部电影女教师被学生在教室轮奸 浏览:325
畸形丧尸电影 浏览:99
美片排名前十 浏览:591
韩国电影新妈妈女主角叫什么 浏览:229
黑金删减了什么片段 浏览:280
泰国宝儿的电影有哪些 浏览:583
3d左右格式电影网 浏览:562
跟师生情有关的电影 浏览:525
恐怖鬼片大全免费观看 浏览:942
电影里三节是多长时间 浏览:583