A. 隐马尔可夫模型的基本算法
针对以下三个问题,人们提出了相应的算法
*1 评估问题: 前向算法
*2 解码问题: Viterbi算法
*3 学习问题: Baum-Welch算法(向前向后算法)
B. 如何用简单易懂的例子解释隐马尔可夫模型
隐马尔可夫(HMM)好讲,简单易懂不好讲。我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子。
还是用最经典的例子,掷骰子。假设我手里有三个不同的骰子。第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1/6。第二个骰子是个四面体(称这个骰子为D4),每个面(1,2,3,4)出现的概率是1/4。第三个骰子有八个面(称这个骰子为D8),每个面(1,2,3,4,5,6,7,8)出现的概率是1/8。
假设我们开始掷骰子,我们先从三个骰子里挑一个,挑到每一个骰子的概率都是1/3。然后我们掷骰子,得到一个数字,1,2,3,4,5,6,7,8中的一个。
不停的重复上述过程,我们会得到一串数字,每个数字都是1,2,3,4,5,6,7,8中的一个。例如我们可能得到这么一串数字(掷骰子10次):1 6 3 5 2 7 3 5 2 4
这串数字叫做可见量链。但是在隐马尔可夫模型中,我们不仅仅有这么一串可见量链,还有一串隐含量链。在这个例子里,这串隐含变量链就是你用的骰子的序列。比如,隐含量链有可能是:D6 D8 D8 D6 D4 D8 D6 D6 D4 D8
一般来说,HMM中说到的马尔可夫链其实是指隐含量链,因为隐含量(骰子)之间存在转换概率的。在我们这个例子里,D6的下一个状态是D4,D6,D8的概率都是1/3。D4,D8的下一个状态是D4,D6,D8的转换概率也都一样是1/3。这样设定是为了最开始容易说清楚,但是我们其实是可以随意设定转换概率,或者转换概率分布的。比如,我们可以这样定义,D6后面不能接D4,D6后面是D6的概率是0.9,是D8的概率是0.1。这样就是一个新的HMM。
同样的,尽管可见量之间没有转换概率,但是隐含量和可见量之间有一个概率叫做emission probability(发射概率?没见过中文怎么说的。。。)。对于我们的例子来说,六面骰(D6)产生1的emission probability是1/6。产生2,3,4,5,6的概率也都是1/6。我们同样可以对emission probability进行其他定义。比如,我有一个被赌场动过手脚的六面骰子,掷出来是1的概率更大,是1/2,掷出来是2,3,4,5,6的概率是1/10。
C. 关于隐马尔可夫模型(HMM)的训练问题
我使用过HMM,不过仅限于语音识别。我就在语音识别的领域跟你说一下吧。
UMDHMM我没怎么看过,HMM相关代码我是自己写的。
HMM中涉及的是“观察值”和“隐藏状态”。你说的“观察状态”应该是指“观察值”吧
对于第一个疑问,
看描述的样子,1,2应该是代表“隐藏状态”。
假设某个语音单元代表的最佳状态是1 1 2 2 3 4 5 5 5 5 6 (不考虑非发散状态); 其中1->1是一次状态转移;1->2是另一次状态转移;2->是又一次状态转移;依次类推。这样这个语音单元共发生了10次状态转移;
对于第一个疑问的后半部分,我看不懂你想说什么
对于第二个疑问,好像你对HMM的基本概念还不是很了解。
一般情况下,一个观察值就对应一个状态;
D. 隐马尔可夫模型的基本概述
一种HMM可以呈现为最简单的动态贝叶斯网络。隐马尔可夫模型背后的数学是由LEBaum和他的同事开发的。它与早期由RuslanL.Stratonovich提出的最优非线性滤波问题息息相关,他是第一个提出前后过程这个概念的。
在简单的马尔可夫模型(如马尔可夫链),所述状态是直接可见的观察者,因此状态转移概率是唯一的参数。在隐马尔可夫模型中,状态是不直接可见的,但输出依赖于该状态下,是可见的。每个状态通过可能的输出记号有了可能的概率分布。因此,通过一个HMM产生标记序列提供了有关状态的一些序列的信息。注意,“隐藏”指的是,该模型经其传递的状态序列,而不是模型的参数;即使这些参数是精确已知的,我们仍把该模型称为一个“隐藏”的马尔可夫模型。隐马尔可夫模型以它在时间上的模式识别所知,如语音,手写,手势识别,词类的标记,乐谱,局部放电和生物信息学应用。
隐马尔可夫模型可以被认为是一个概括的混合模型中的隐藏变量(或变量),它控制的混合成分被选择为每个观察,通过马尔可夫过程而不是相互独立相关。最近,隐马尔可夫模型已推广到两两马尔可夫模型和三重态马尔可夫模型,允许更复杂的数据结构的考虑和非平稳数据建模。
E. 关于隐马尔可夫的问题
正解:1班35号
或6班班花
F. 如何通过隐马尔科夫模型来预测股票价格
马尔科夫预测模型它的前提条件是,在各个期间或者状态时,变量面临的下一个期间或者状态的转移概率都是一样的、不随时间变化的。一旦转移概率有所变化,Markov模型必须改变转移概率矩阵的参数,否则,预测的结果将会有很大的偏差。 随机过程中,
G. 条件随机场和隐马尔科夫模型最大区别在哪里
1、实际分析中,往往需要知道经过一段时间后,市场趋势分析对象可能处于的状态,这就要求建立一个能反映变化规律的数学模型。马尔科夫市场趋势分析模型是利用概率建立一种随机型的时序模型,并用于进行市场趋势分析的方法。
马尔科夫分析法的基本模型为: X(k+1)=X(k)×P
公式中:X(k)表示趋势分析与预测对象在t=k时刻的状态向量,P表示一步转移概率矩阵,
X(k+1)表示趋势分析与预测对象在t=k+1时刻的状态向量。
必须指出的是,上述模型只适用于具有马尔科夫性的时间序列,并且各时刻的状态转移概率保持稳定。若时间序列的状态转移概率随不同的时刻在变化,不宜用此方法。由于实际的客观事物很难长期保持同一状态的转移概率,故此法一般适用于短期的趋势分析与预测。
2、马尔科夫模型:是用来预测具有等时间隔(如一年)的时刻点上各类人员的分布状况。马尔科夫模型的基本思想是:找出过去人事变动的规律,以此来推测未来的人事变动趋势。
马尔科夫模型:是根据历史数据,预测等时间间隔点上的各类人员分布状况。此方法的基本思想上根据过去人员变动的规律,推测未来人员变动的趋势。步骤如下:
①根据历史数据推算各类人员的转移率,迁出转移率的转移矩阵;
②统计作为初始时刻点的各类人员分布状况;
③建立马尔科夫模型,预测未来各类人员供给状况。